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Topology-Aware Evenly-Spaced                
Streamline Placement 

Keqin Wu, Zhanping Liu, Song Zhang, Member, IEEE, Robert J. Moorhead II, Senior Member, IEEE 

Abstract— This paper presents a new streamline placement algorithm that produces evenly-spaced long streamlines while 
preserving topological features of a flow field. Singularities and separatrices are extracted to decompose the flow field into 
topological regions. In each region, a seeding path is selected from a set of streamlines integrated in the orthogonal flow field. 
The uniform sample points on this path are then used as seeds to generate streamlines in the original flow field. Additional 
seeds are placed where a large gap between adjacent streamlines occurs. The number of short streamlines is significantly 
reduced as evenly-spaced long streamlines spawned along the seeding paths can fill the topological regions very well. Several 
metrics for evaluating streamline placement quality are discussed and applied to our method as well as some other approaches. 
Compared to previous work in uniform streamline placement, our method is more effective in creating evenly-spaced long 
streamlines and preserving topological features. It has the potential to provide both intuitive perception of important flow 
characteristics and detail reconstruction across visually pleasing streamlines.  

Index Terms— Evenly-spaced streamlines, flow topology, flow visualization, seeding strategy, streamline placement  

——————————      —————————— 

1 INTRODUCTION

treamlines, as opposed to texture-based techniques, 
provide a sparse representation of the underlying 
flow. The effectiveness is highly dependent on the 

placement of integral curves that involves seed selection 
and density control. There are several criteria [1], [2], [3], 
[4] for placing streamlines: (1) feature preservation — 
important flow structures around singularities need to be 
retained, (2) uniform placement — evenly-spaced 
streamlines may help with visual interpolation between 
them, (3) continuous representation — discontinuities 
may cause distractions, and (4) reconstruction fidelity — 
minimum error is desired when reconstructing a flow 
field from the streamline representation [5]. 

Topology characterizes a flow in that the relatively 
uniform flow behavior in each topological region can be 
deduced from its boundary [6], [7], [8]. Thus topology 
preservation in an evenly-spaced streamline placement 
facilitates mental reconstruction of the flow. This issue is 
not sufficiently addressed in streamline placement 
algorithms [1], [3], [4], [9], [10] except for the efforts of 
Verma et al. [2] and Chen et al. [11]. However, Verma et 
al.’s method emphasizes flow topology at the cost of 
placement uniformity. Chen et al.’s work combines 
topology preservation with Jobard and Lefer’s streamline 
placement algorithm [10]. We include a comparison to 
Chen et al.’s method in section 5. 

This paper presents a topology-preserving and evenly-
spaced streamline placement algorithm. This method 

exploits flow topology and orthogonal flow for seed 
selection. A flow field is decomposed into topological 
regions. In each region the longest orthogonal flow path 
originating from the boundary is chosen as a seeding 
path. 

The remainder of this paper is organized as follows. 
Section 2 reviews previous streamline placement 
algorithms. In section 3 four criteria used to measure 
streamline layout quality are discussed. Section 4 
describes our algorithm in detail. Results and comparison 
to previous methods are given in section 5 to demonstrate 
the merits of the proposed method. Section 6 concludes 
this paper with future plans.  

2 RELATED WORK 
Turk and Banks [1] presented an image-guided 
streamline placement algorithm that iteratively refines an 
initial layout by editing streamlines to minimize an 
energy function in order to obtain an optimal output. 
Later, Mao et al. [12] extended it for streamline placement 
on curved surfaces.  

There are several sample-based algorithms for placing 
evenly-spaced streamlines. Jobard and Lefer [10], [13], 
[14] proposed a neighborhood seeding strategy to steer 
streamline placement. Each sample of an accepted 
streamline provides a candidate seed on each side in the 
direction orthogonal to the flow. Liu et al. [3], [4] 
enhanced this method by designing a double-queue 
seeding mechanism to prioritize both topologically 
distributed seeds and long streamlines. In addition, they 
presented a rapid and robust loop detection strategy to 
prevent a layout from being cluttered by tightly spiraling 
streamlines [3]. Chen et al. adapted Jobard and Lefer’s 
method [10] by adding topological separatrices as initial 
streamlines to the placement [11]. Mebarki et al. 
developed a global seeding scheme in which Delaunay 
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triangulation of the streamline samples of the current 
placement is performed to place a seed at the center of the 
biggest cavity [9]. Li and Shen presented a framework for 
view-dependent placement and rendering of 3D 
streamlines [15]. Recently Liu and Moorhead proposed an 
interactive view-driven evenly-spaced streamline 
placement algorithm [16]. These sample-based algorithms 
mainly differ from one another in the greedy seeding 
strategy that drives the placement process until a 
dynamic queue of candidate seeds is empty. However, 
the separatrices of a flow are seldom shown in the 
resulting placement and therefore more mental 
reconstruction may be needed to understand the flow 
topology.  

Verma et al. presented a flow-guided seeding strategy 
in which topological templates are designed to put seeds 
around singularities and then Poisson-disk distribution is 
used to place additional seeds elsewhere [2]. This work 
was later extended to 3D flows [17]. One advantage of 
this method is that topological features of the flow can be 
retained in the vicinity of singularities even when the 
global placement density is low. However, the topological 
templates only exhibit the flow patterns near the 
singularities, and the Voronoi diagram used to adjust the 
template size does not reflect the actual flow patterns 
sufficiently, leaving a large number of streamlines placed 
unevenly outside the templates. Thus the overall 
uniformity is compromised as the flow complexity and 
the distance between singularities increase. Chen et al. 
developed a similarity metric that implicitly accentuates 
regions of geometric interest to control the density of 
streamlines [5]. They also employed an error metric to 
evaluate placement quality by comparing the 
reconstructed flow against the original flow. Li et al. 
proposed a novel streamline selection scheme based on 
both local and global dissimilarity between streamlines to 
describe the underlying flow pattern [18]. However, 
uniform placement is not the goal of these two 
algorithms. Our algorithm aims to produce an aesthetic 
evenly-spaced streamline placement while capturing 
topology information such as singularities and 
separatrices. Our contribution includes a new seeding 
strategy, an enumeration of some streamline placement 
criteria, and a comparison between streamline placement 
algorithms. 

3 STREAMLINE PLACEMENT QUALITY  
This section discusses several methods for evaluating 
streamline layout quality in terms of placement 
uniformity, streamline length, topological feature 
preservation, and flow reconstruction fidelity. In Section 
5, these methods are used to test the performance of our 
algorithm. 

3.1 Evenly-Spaced Placement  
Evenly-spaced placement refers to the uniform density of 
streamlines [9]. This task usually involves two 
components: one is to select some locations to place seeds 

and the other is to govern the integration of each 
streamline by checking inter-streamline distance against a 
specified threshold [3], [4], [9], [10].  

A quantitative evaluation of uniform density is used in 
the image-guided streamline placement method [1]. A 
low-pass filter is adopted to blur the binary-valued image 
of streamline representation. The resulting image is then 
compared against a uniform gray-scale image to drive an 
iterative layout refinement process.  

3.2 Long Streamline Placement 
Another important criterion is streamline length. Long 
streamlines are visually pleasing and may suppress 
discontinuities resulting from short streamlines [2]. 

Discontinuities may be categorized into those near 
singularities and those in laminar areas [9]. The former 
case may be unavoidable as streamlines approach one 
another near sinks or sources before being terminated. 
The latter case can be addressed by using an improved 
seeding strategy. 

Since every streamline falls into a certain topological 
region [6], [7], [8], each case of discontinuity can be 
exemplified by analyzing the subset of streamlines in a 
single topological region. Fig. 1 illustrates the 
discontinuous streamline placement and the desired long 
streamline placement. As Fig. 1 (left) indicates, a short 
streamline occurs when (1) two neighboring long 
streamlines leave a space that is neither small enough to 
maintain a specified density nor large enough to allow for 
a longer streamline (shown in the blue square) and (2) 
streamlines fail to reach the vicinity of a source or sink 
(shown in the green square). A desirable streamline 
placement needs to effectively handle these two scenarios 
to prevent short streamlines. A better solution is given in 
Fig. 1 (right) where each streamline starts near the source 
and approaches the sink without breaking in the middle.   

          

      
Fig. 1. Continuity of streamlines within a simple topological region. A 
topological region is indicated by its red boundary. Left: 
Discontinuities (in the blue rectangle) exist between the source and 
the sink as well as near the focus (in the green rectangle). Right: 
Discontinuities occur only in the vicinity of singularities.  

3.3 Topological Feature Preservation 

Singularities and separatrices provide a concise depiction 
of salient flow patterns. Fig. 2 compares two streamline 
placement strategies in preserving topological features. 
As shown in Fig. 2 (right), the more accurate 
representation of the flow field provides a detailed 
spiraling pattern around the focus and a clear 
segmentation around the saddle.  
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Fig. 2. Topological feature preservation through streamline 
placement. Left: Streamlines under-represent the topological 
features, i.e., the saddle in the red square and the focus in the 
blue square. Right: Streamlines effectively represent the 
topological features constituted by the saddle, the focus, and 
separatrices (green curves). Figure reproduced from [2]. 

3.4 Flow Reconstruction Fidelity 

The error measurement in [5] offers a way to evaluate 
how well the flow field as a whole is preserved by a 
streamline placement. The error function is defined as 
follows. 

Given a vector field V  with n  grid points, 
110 ,...,, nvvv , let S  denote a set of sampled streamlines. 

A vector field 'V  is reconstructed through Delaunay 
triangulation of these samples in S  and n vectors, 

110 ',...,',' nvvv , are re-sampled at the original grid 
points. Then the flow reconstruction error is defined by 
the average residual magnitude:  
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4 TOPOLOGY-AWARE EVENLY-SPACED 

STREAMLINE PLACEMENT 
The main idea of our method is to extract the flow 
topology that divides the flow field into regions of 
uniform flow behavior. An orthogonal curve crossing all 
streamlines within each region is then chosen to guide 
streamline placement. 

Our algorithm involves three main steps: (1) 
separating the flow field into regions by extracting the 
topological skeleton, (2) searching for a seeding path that 
orthogonally crosses all streamlines within each region, 
and (3) placing seeds evenly along each seeding path to 
integrate streamlines from the seeds. 

The details are presented in the remainder of this 
section. First, the concept of generalized topology [19] is 
briefly reviewed and the existence of the paths crossing 
all streamlines in each topological region is discussed in 
section 4.1. Then, the selection of the longest seeding path 
and the distance control over streamline density are 
described in sections 4.2 and 4.3, respectively. Section 4.4 
gives the framework of this algorithm.   

4.1 Generalized Topology and Region-Crossing 
Paths 
The topology of a 2D linear vector field V  consists of all 
singularities (sinks, sources, saddles, and centers), 
periodic orbits, and separatrices of V  [8]. The flow field is 

segmented by the separatrices into a set of topological 
regions so that all streamlines (except for periodic orbits) 
within each region share one source and one sink [8]. Fig. 
3 shows a typical topological region whose boundary is 
connected with one sink, one source, and two saddles.  

 

Fig. 3. The topology of a 2D flow field. There are four singularities, 
i.e., one source (blue point), one sink (green point), and two saddles 
(yellow squares). Separatrices (dark curves) connect the saddles 
with the sources and the sinks. 

In general, separatrices in a 2D flow are streamlines 
that either start from or end at saddles. They can be 
computed by integrating streamlines from the saddles. 
However, for any bounded flow field, it is difficult to 
determine regions defined by separatrices that connect to 
saddles outside the domain. To deal with this issue, 
Scheuermann et al. proposed the local vector field 
topology that supports additional topological 
segmentation by identifying boundary saddles that 
exhibit inflow/outflow switches along the flow field 
boundary [19]. The boundary of a flow field is therefore 
segmented by boundary saddles into inflow boundaries 
and outflow boundaries that serve locally as sources 
where the flow is directed inwards and sinks where the 
flow is directed outwards [8]. The generalized notion of 
separatrices then includes streamlines connecting 
boundary saddles. Fig. 4 compares global topology and 
local topology. More detailed information about the 
generalized topology can be found in [8], [19]. 

  
Fig. 4. Global topology (left) and local topology (right) 
(Scheuermann et al. [19]). Global topology is derived by 
considering the entire field. Local topology reveals the 
separatrices connecting boundary saddles with sources (blue 
points) and sinks (green points). The red square in the left figure 
indicates the region shown in the right figure.  

With separatrices integrated from boundary and 
ordinary saddles, those streamlines that cannot be sorted 
into a subset but share the same source or sink are then 
classified into a new type of region, in which all 
streamlines share the same inflow or outflow boundary. 
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Both inflow boundary and source can be considered 
entrances where flow enters the region, and both outflow 
boundary and sink can be considered exits where flow 
leaves the region. For every region, a path crossing all the 
streamlines can be obtained between the edges of the 
region. Fig. 5 shows topology without boundary saddles 
and local topology with boundary saddles. Fig. 6 shows a 
set of region-crossing paths of a flow field.  

                              

                
Fig. 5. The topology without boundary saddles (Top) and the local 
topology with boundary saddles (Bottom). The blue curves denote 
the separatrices. The black arrows indicate flow directions along 
the boundary.  

              
Fig. 6. A set of region-crossing paths (black lines) of a flow field. 

4.2 The Longest Seeding Path 
The topological segmentation method ensures that there is 
no more than one flow entrance (either inflow boundary or 
source) and no more than one exit (either outflow boundary 
or sink) along the boundary of a topological region. The rest 
of the boundary is then separated into two edges. An 
orthogonal flow field V  can be obtained by rotating all the 

vectors of a flow  V  090  clockwise or counter-clockwise. 
The streamlines of V  are called orthogonal curves of the 
original flow V . Any orthogonal curve intersecting the two 
edges of a region crosses all the in-region streamlines of the 
original flow.  

The desired seeding path is the one that can be used to 
generate evenly spaced streamlines. In general, a longer 
path often results in a more uniform placement than a 
shorter one. Given a fixed number of streamlines that are 
crossed, the longer the path, the larger the average 
distance between its intersections with streamlines. 
Seeding across large cavities may provide better control 
over the overall density of streamlines [9], [10]. In fact, 
seeding paths obtained from the orthogonal flow field are 
more effective than other choices in creating an elegant 
placement. Fig. 7 compares the streamlines spawned 
along three kinds of paths, i.e., a long straight path, a 
short orthogonal path, and the longest orthogonal path. 
The seeds are placed equidistantly along the three paths. 
We can visually verify that the longest orthogonal path 
produces the most evenly-placed streamlines. Fig. 8 
shows the orthogonal curves crossing all the topological 
regions of a flow field.   

 

Fig. 7. Three comparative paths crossing a topological region. The 
topological domain is filled with the red streamlines spawned 
equidistantly along a long straight line (left), a short orthogonal curve 
(middle), and the longest orthogonal curve (right), respectively. 

Orthogonal curves are obtained by integrating 
streamlines in the orthogonal flow field. The process of 
finding the longest curve is straightforward: first, we 
begin with the longer one of the two edges, sample it by 
interval D ; integrate an orthogonal curve from each 
sample point toward the other edge through the inner 
region; and finally choose the longest curve.  

The regions within periodic orbits or saddle-connected 
loops are addressed as special cases. Periodic orbits can 
be detected by using Wischgoll and Scheuermann’s 
method [20] or Chen et al. methods [11]. A saddle-
connected loop, e.g., a homoclinic loop, consists of one or 
more saddles and the separatrices connecting them. It can 
be identified by checking whether the boundary separatrices 
of a topological region are connected with only saddles. In 
both cases, the longest orthogonal curves that start from 
either the periodic cycles or saddle-connected loops toward 
the singularities and other closed streamlines within them 
(cycles and/or loops) are selected as the seeding paths. Fig. 9 
shows the seeding paths (black curves) found for both cases. 
One flow field (left) captures the eye of Hurricane Lili and 
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the other (right) consists of three vortices [2]. The path 
selection scheme for any other kinds of topological regions is 
the same — finding the longest path between the edges of a 
topological region.    

 

 

Fig. 8. The seeding paths. Top: The longest paths (black) are 
determined from the orthogonal curves (light blue) crossing the 
topological regions (divided by blue separatrices). Bottom: 
Streamlines (red) are spawned along the seeding paths (black). 

 
Fig. 9. The selection of seeding paths in two flows with closed 
orbits. Left: a flow field that contains three periodic orbits (bold red 
curve). Right: a flow field with three saddle-connected loops (bold 
red curves) which each contain a set of center orbits. The black 
curves represent the seeding paths. 

4.3 Inter-streamline Distance Control 
Once a new streamline is integrated from a seed on a 
seeding path, it usually approaches the adjacent 
streamlines as it goes towards the entrance or exit of the 
region. When two adjacent streamlines diverge, cavities 
emerge between them. Thus inter-streamline distance 
control is needed. 

(1) Inter-streamline distance 
     Inter-streamline distance can be approximated by 

inter-sample distance [3]. Let point p  be a sample point 
of streamline

1S , the inter-streamline distance from p  to 

1S ’s closest neighbor 
2S  is the shortest distance between 

p  and the sample points of 
2S , i.e. 

),,( 21 SSpd = |)min(| jpq  where 
jq  represents the sample 

point on 
2S . However, this measurement is not 

symmetric between the two neighboring streamlines. For 
example, in Fig. 10, ||),,( 121 pqSSpd  , whereas 

|'|),,( 1121 pqSSqd  , and ),,(),,( 12121 SSqdSSpd  . Thus 
we propose the use of orthogonal distance to govern inter-
streamline distance. The orthogonal distance from p  to 

2S , ),,( 21 SSpd , is defined as the arc length of the 
orthogonal curve OS  that starts from p  and ends at the 
intersection point of 

2S  and OS , 
2q . The length of the  

orthogonal curve segment || 2pq  can be approximated by 
the sum of the distance between the sample points along 
the curve between p  and 

2q . As Fig. 10 shows, 
),,( 21 SSpd ),,( 122 SSqd   || 2pq . The seeding interval 

along the longest orthogonal path is measured by 
orthogonal distance. 
     (2) Orthogonal distance control 

A streamline  is uniformly sampled as it is integrated. 
The distance from each newly generated sample point 
along this streamline to an adjacent streamline is 
computed as the length of the orthogonal curve starting 
from that sample to the adjacent streamline, i.e., the 
orthogonal distance. Let D  be the interval between two 
adjacent seeds along the seeding path, )10(  aaDDs  
the threshold for minimum distance control, and 

)2(  bbDDl  the threshold for maximum distance 
control. Once the inter-streamline distance is less than 

sD ,  
streamline integration is terminated. If the distance is 
greater than lD , additional sample points are generated 
on the orthogonal curve by interval D  and new 
streamlines are placed at the sample positions. Results 
indicate that this orthogonal distance metric is 
particularly well suited for low-density uniform 
placement. For dense representation, it could be replaced 
by a faster approximation by the inter-sample distance 
scheme. 

 

Fig. 10. The inter-streamline distance metric. The bold red curve 
indicates the orthogonal distance between 

1S and
2S . The two bold 

blue straight lines indicate the minimal distance from p to the sample 
points of streamline 

2S  and the minimal distance from point 
1q to 

the sample points of streamline 
1S  respectively.  
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4.4 The Pipeline 
Suppose ),...,1( niTRi   are the topological regions of a 
flow field V , and 

iPath  is the longest orthogonal path for 

iTR . The pipeline of our algorithm is described as follows. 

 
 
Fig. 11. The pipeline of our algorithm. 

(1) Extract the topological regions of V :   
    1-1 Obtain singularities, boundary saddles, and 
periodic orbits; 
    1-2 Integrate separatrices from the saddles and 
boundary saddles;  
    1-3 Create a topology graph with separatrices, 
singularities, boundary saddles, and periodic orbits; 
    1-4 Extract topological regions based on the topology 
graph.  

 
(2) Find 

iPath  in each region 
iTR : 

    Let 
1Edge  and 

2Edge  be  the  edges of 
iTR  and 

21 EdgeEdge  .  
    2-1 Compute a set of orthogonal curves evenly spaced 
by interval D  along 

1Edge ; 
    2‐2 Select the longest orthogonal curve as 

iPath . 
            

(3) Place seeds along 
iPath  to integrate streamlines:  

Let  ),...,1|{ mjseedQ j  be the queue of candidate 
seeds and 

jS  the streamlines placed within 
iTR . 

jS  is 
uniformly sampled by interval D  as it is integrated.  
Qevenly-spaced (by D ) samples of 

iPath   

0S 
1Edge , j1; 

 While  []Q                         
 { 
      

jseed Q.pop(); 
       For direction = (forward, backward)  
       {                               
              Current sample point 

cP 
jseed  

              Do 
              {                                 

                           1. If (
cP 

2Edge ) 
                                      get the next sample point 

nP  
                                      on the

2Edge  in the current direction;    
                              else  
                                      Integrate 

jS  from 
cP  in the current  

                                      direction to get the next sample point              
                                     

nP  on  jS ;                                    
                              

cP   nP ; 
                      2. Compute the orthogonal curve OS 
                          from 

cP  toward the closest                        
                          streamline among 

01,..., SS j
;                                   

                          orthogonal distance d  the length of   
                          OS; 
                      3.  Check d:                                                                     
                           If 

lDd   
                           { 
                                   Sample OS  by interval D ;                        
                                   Q.push (samples); 
                           } 
                } While ((

cP 
2Edge  and  cP  is not the end  

                 point of 
2Edge ) or (

cP 
2Edge  and  sDd    

                 and 
cP  is within the flow boundary ))                            

        }  
         jj+1;               
 } 

jS 
2Edge ; 

 Render ),...0( jnSn  ; 

5 RESULTS AND DISCUSSIONS 
Our topology-aware streamline placement algorithm is 
applied to nine flow datasets. The distance thresholds 
used in our algorithm are Ds=0.5D and Dl=2D, where D  is 
a percentage of the field width.  

Fig. 12 demonstrates the streamline placements for 
flow 1 with a simple topology, flows 2 and 3 with 
periodic orbits, and flow 4 with waving flow patterns 
around eight vertically symmetric centers and foci. Fig. 13 
shows two slices from a simulation of Hurricane Lili’s 
wind field. The hurricane eye is clearly visible through 
the representation of evenly-spaced streamlines. The 
separatrices present in the images allow for accurate 
investigation of the interaction between the eye and the 
surrounding air flow. Fig. 14 displays a complex flow 
field obtained from a US Navy model of the Northeast 
Pacific Ocean. As Figures 12, 13, and 14 indicate, our 
algorithm is able to retain the topological skeleton in a 
considerably uniform streamline placement.  

The comparison of our algorithm to several previous 
methods in terms of evenly-spaced placement, 
continuous representation, feature preservation, 
reconstruction fidelity, and time complexity follows.   

Evenly-Spaced Placement Our method is capable of 
creating uniform streamline placements. The relatively 
high density near a singularity is due to the underlying 
flow characteristics. In fact, nearly all sample-based 
algorithms suffer from this inherent problem. Thus the 
comparison between different algorithms in placement 
quality is focused on laminar areas. The use of the longest 
orthogonal path for streamline seeding reduces 
discontinuities in each topological region and hence helps 
with the placement of evenly-spaced streamlines. As 
shown in Fig. 15, our approach is more effective than 
Verma  et  al.’s  flow-guided  method  [2]  in   maintaining  
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(a)                                            (b)      

          
(c)                                            (d) 

Fig. 12. Streamline placements for four sample flows: (a) flow field 1 
with a simple topology, (b) flow field 2 with four periodic orbits, (c) 
flow field 3 with five periodic orbits, and (d) flow field 4 with waving 
flow patterns around eight vertically symmetric centers and foci. 

 
Fig. 13. Streamline placements for flow fields 5 and 6 (two slices of 
Hurricane Lili).  

 

Fig. 14. Streamline placement for flow field 7 (an ocean flow field 
149.5° W ~112.4° W, 35.0° N ~ 49.9° N). 
 

 

Fig. 15. Comparison of Verma’s method [2] (left) with our method 
(right) in streamline placement for flow field 8.  
 
overall placement uniformity, given the same streamline 
density input. As these algorithms differ in distance 
metric and inter-streamline density control, they exhibit 
differences in the number of the streamlines of a 
placement (Tables 1 and 2). Our algorithm tends to 
produce slightly denser streamlines than other methods 
because it adopts orthogonal distance that is measured as 
the length of a curved orthogonal streamlet instead of the 
inter-sample distance. In addition, it always seeds in 
sparse areas first in a way to help streamlines populate 
the flow field in a uniform way.  

The quantitative comparison in uniformity is 
conducted by applying a Gaussian filter to the streamline 
placement image. The mean squared error (MSE) between 
the gray-scale image and the resulting image reveals how 
evenly-spaced the streamlines are. A smaller MSE 
indicates more uniform density. The filtered version of 
the streamline placement images of flow field 9 is given in 
Fig. 16. The related statistics of our algorithm, Jobard and 
Lefer’s algorithm [10], Mebarki et al.’s algorithm [9], Liu 
et al.’s algorithm [3], and Chen et al.’s algorithm [11] are 
provided in Table 1 (for flow 1) and Table 2 (for flow 9). 
As shown by the average result in Fig. 17, our method 
produces a slightly higher gray-scale MSE than Liu et al.’s 
approach, possibly due to some degree of cluttering 
caused by the use of separatrices in our algorithm, but a 
lower gray-scale MSE than the other three algorithms.   

Continuous Representation Our method exhibits the 
potential to generate long streamlines. There are two 
major sources for the occurrence of short streamlines 
(section 3.2). As streamlines are seeded along the longest 
orthogonal curve in each topological region, the sparsest 
area is filled first and then short streamlines are less likely 
to show up there. Thus the first cause — large cavities 
between neighboring long streamlines — is effectively 
addressed. The longest seeding path ensures that the 
streamlines are evenly-spaced in the relatively sparse 
region. The streamlines originating from this region can 
approach sinks or sources very well under streamline 
density control. Thus the second cause — the inability of 
streamlines to reach the vicinity of singularities — is 
considerably mitigated and the resulting placement can 
reveal salient flow structures clearly. 
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       Jobard-Lefer [10]                   Mebarki et al. [9]                      Liu et al. [3]                      Chen et al. [11]                      Our method 

Fig. 16. Comparison of our method with Jobard and Lefer’s method [10], Mebarki et al.’s method [9], Liu et al.’s method [3], and Chen et 
al.’s method [11] in the blurred image of streamline placement for flow field 9.  
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    Flow field 1                                                                           Flow field 9 

Fig. 17. Quantitative comparison of our method with Jobard and Lefer’s method [10], Mebarki et al.’s method [9], Liu et al.’s method [3], 
and Chen et al.’s method [11] in gray-level MSE versus separating distance based on Tables 1 and 2.          

 

 

 

 
Jobard-Lefer [10]                  Mebarki et al. [9]                    Liu et al. [3]                       Chen et al. [11]                       Our method   

Fig.18. Comparison in the streamline placement of flow field 9. From left to right are streamline placements generated by using Jobard-Lefer
[10], Mebarki et al[9], Liu et al.[3], Chen et al.[11], and our algorithm for three increasing densities, top to bottom, 3.2%, 1.6%, 0.8% of the
flow field width.  
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Feature Preservation As Fig. 18 shows, our algorithm 
retains topological elements like singularities and 
separatrices. The critical points, periodic orbits, and 
separatrices are not highlighted, as is the case with [11], to 
facilitate the comparison of our algorithm with others. 
However, highlighting these features can be easily 
implemented in our method and might be useful, 
especially for vector fields on surfaces, since only portions 
of a periodic orbit may be visible for any given viewpoint. 
In the other four algorithms, the loss of topology 
information may not be noticeable with a high streamline 
density (bottom of Fig. 18), but is pronounced with a low 
one (top of Fig. 18). Fig. 19 compares the five 
aforementioned algorithms using very sparse streamline 

placements, of which the one generated by our method is 
able to preserve the flow topology very well. 
     Reconstruction Fidelity The reconstruction error 
evaluation method described in [5] is applied to our test 
results. Fig. 20 compares the five algorithms regarding the 
reconstruction error of streamline placement, with white 
indicating the highest reconstruction error and black the 
lowest. Fig. 21, Table 1, and Table 2 compare these five 
algorithms in terms of the reconstruction error for flow 
fields 1 and 9. Our method produces a low reconstruction 
error, particularly as the streamline density decreases. In 
other words, our approach is more effective than the 
other four in reconstructing a flow field from a small 
number of streamlines.   

 
         Jobard-Lefer [10]                  Mebarki et al. [9]                       Liu et al. [3]                      Chen et al. [11]                      Our method 

Fig. 19. Comparison in the streamline placement with a very low density for flow field 9. 

  
         Jobard-Lefer [10]                Mebarki et al. [9]                     Liu et al. [3]                      Chen et al. [11]                     Our method          

Fig. 20. Comparison in the reconstruction error of streamline placement for flow field 9. 
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Fig. 21. Quantitative comparison of our method with Jobard and Lefer’s method [10], Mebarki et al.’s method [9], Liu et al.’s method [3], and 
Chen et al.’s method [11] in reconstruction error versus separating distance based on Tables 1 and 2. 
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TABLE 1
QUANTITATIVE COMPARISON IN UNIFORM DENSITY AND RECONSTRUCTION ERROR FOR FLOW FIELD 1 

 

 
Separating Distance (% width) 

 

 
0.8 

 
1.6 

 
3.2 

 
6.4 

 
12.8 

 
Number of 
Streamlines 

Jobard-Lefer [10] 551 261 130 58 24 
Mebarki et al. [9] 526 231 136 67 31 

Liu et al. [3] 497 219 150 78 32 
Chen et al. [11] 492  236 133 59 35 
Our Algorithm 466 295 152 78 45 

 
MSE of 

Gray-level 

Jobard-Lefer [10] 0.0189 0.0228 0.0219 0.0136 0.0072 
Mebarki et al. [9] 0.0145 0.0185 0.0205 0.0142 0.0109 

Liu et al. [3] 0.0134 0.0171 0.0161 0.0111 0.0062 
Chen et al. [11] 0.0176 0.0187 0.0190 0.0134 0.0070 
Our Algorithm 0.0142 0.0175 0.0184 0.0132 0.0095 

 
Reconstruction 

Error 

Jobard-Lefer [10] 0.0010 0.0030 0.0098 0.0322 0.0937 
Mebarki et al. [9] 0.0019 0.0040 0.0094 0.0259 0.1122 

Liu et al. [3] 0.0020 0.0048 0.0081 0.0276 0.0790 
Chen et al. [11] 0.0024 0.0043 0.0083 0.0302 0.0856 
Our Algorithm 0.0016 0.0026 0.0069 0.0211 0.0682 

 
Running Time 

Jobard-Lefer [10] 0.546 0.280 0.156 0.109 0.063 
Mebarki et al. [9] 0.274 0.147 0.090 0.067 0.042 

Liu et al. [3] 0.164 0.056 0.034 0.025 0.013 
Chen et al. [11] 0.574 0.297 0.177 0.127 0.066 
Our Algorithm 0.818 0.420 0.237 0.168 0.097 

 
TABLE 2 

QUANTITATIVE COMPARISON IN UNIFORM DENSITY AND RECONSTRUCTION ERROR FOR FLOW FIELD 9 
 

 
Separating Distance (% width) 

 

 
0.8 

 
1.6 

 
3.2 

 
6.4 

 
12.8 

 
Number of 
Streamlines 

Jobard-Lefer [10] 495 234 114 54 26 
Mebarki et al. [9] 451 180 115 57 25 

Liu et al. [3] 437 200 136 60 33 
Chen et al. [11] 467 216 115 59 33 
Our Algorithm 389 247 123 59 28 

 
MSE of 

Gray-level 

Jobard-Lefer [10] 0.0199 0.0237 0.0220 0.0138 0.0073 
Mebarki et al. [9] 0.0135 0.0182 0.0194  0.0135  0.0082 

Liu et al. [3] 0.0141 0.0173 0.0162 0.0100 0.0062 
Chen et al. [11] 0.0164 0.0175 0.0183 0.0126 0.0071 
Our Algorithm 0.0130 0.0161 0.0175 0.0124 0.0077 

 
Reconstruction 

Error 

Jobard-Lefer [10] 0.0011 0.0031 0.0110 0.0400 0.1169 
Mebarki et al. [9] 0.0023 0.0045 0.0089 0.0319 0.1046  

Liu et al. [3] 0.0030 0.0055 0.0092 0.0348 0.0649 
Chen et al. [11] 0.0012 0.0029 0.0130 0.0389 0.0831 
Our Algorithm 0.0014 0.0048 0.0098 0.0231 0.0574 

 
Running Time 

Jobard-Lefer [10] 0.421 0.218 0.125 0.078 0.031 
Mebarki et al. [9] 0.213 0.116 0.074 0.047 0.022 

Liu et al. [3] 0.156 0.046 0.028 0.012 0.010 
Chen et al. [11] 0.456 0.237 0.141 0.089 0.039 
Our Algorithm 0.630 0.327 0.193 0.179 0.048 

 

     Time Complexity The computational cost of our 
algorithm depends on (1) topology extraction, (2) seeding 
path selection, and (3) streamline integration under 
density control. Given the number of grid points N  and  
the number of singularities C  of a flow field, (1) needs 

)(NO  time for singularity computation and )(CO  time 
for topology region extraction. The combined execution 
time of (2) and (3) is )(GO  where G  is the number of 

samples that are placed approximately evenly within the 
flow field. Thus the overall time complexity of our 
approach is )),,(max( GCNO . Tables 1 and 2 compare the 
aforementioned five sample-based streamline placement 
algorithms for flows 1 and 9, respectively. The timing 
results measured in seconds are based on a 2.0GHz, 2GB 
RAM PC running Windows Vista. Within a large range of 
varying densities, our approach takes one to three times 
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the time needed by Jobard and Lefer’s [10], Mebarki et 
al.’s [9], or Chen et al.’s method [11] to create an 
approximately equal-density streamline placement. In 
fact, this ratio is largely due to the two-stage layout 
strategy adopted in our algorithm, i.e., generating dumb 
streamlines in the orthogonal flow during the first stage 
to determine seeding paths and placing visible 
streamlines in the original flow during the second stage. 
On the other hand, our method exhibits an obvious 
advantage over the three in placement quality by 
showing accurate separatrices to preserve flow topology, 
independent of the density, in a layout of evenly-spaced 
streamlines. This capability facilitates level-of-detail 
investigation of complex flows (as in Fig. 14), for which a 
rapidly generated coarse yet uniform streamline 
placement reveals the precise topological skeleton to steer 
high-resolution exploration of regions of interest. This 
gain is particularly noticeable and may further blur the 
aforementioned performance gap in terms of overall 
visualization efficiency when handling unknown large-
scale real-world flows. Liu et al.’s algorithm [3] is 
currently the fastest one of the five we compared, mainly 
because of the exclusive use of an adaptive step size 
integrator with error control plus a cubic Hermite 
polynomial curve sampler. Our method allows for 
incorporation of such an integrator to enhance the 
computational performance, while maintaining the 
novelty of addressing streamline placement through the 
orthogonal flow domain.  

6 CONCLUSION AND FUTURE WORK  
We have presented a novel topology-aware evenly-
spaced streamline placement algorithm.  By exploiting the 
intrinsic relationship between a flow field and its 
orthogonal counterpart, a preferred seeding path crossing 
all the streamlines within each topological region is 
determined to place evenly-spaced long streamlines while 
preserving flow topology with accurate separatrices in 
the resulting layout.  

The results demonstrate that our algorithm achieves 
great placement uniformity and high streamline 
continuity at a moderate computational cost. It 
outperforms the flow-guided seeding strategy [2] and 
Chen et al.’s version of neighborhood seeding strategy [11] 
in maintaining overall streamline uniformity as well as 
reconstruction fidelity, and is more effective than other 
methods in preserving the flow topology in the resulting 
placement.  

As for future work, we would like to improve the 
robustness of topological region decomposition for 
handling even more complex topological structures 
involving periodic orbits and saddle-connected loops. In 
addition, we are interested in extending this algorithm to 
curved surface and volume flows. 
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