
Accelerated Unsteady Flow Line
Integral Convolution

Zhanping Liu, Member, IEEE Computer Society, and Robert J. Moorhead II, Senior Member, IEEE

Abstract—Unsteady flow line integral convolution (UFLIC) is a texture synthesis technique for visualizing unsteady flows with high

temporal-spatial coherence. Unfortunately, UFLIC requires considerable time to generate each frame due to the huge amount of

pathline integration that is computed for particle value scattering. This paper presents Accelerated UFLIC (AUFLIC) for near interactive

(1 frame/second) visualization with 160,000 particles per frame. AUFLIC reuses pathlines in the value scattering process to reduce

computationally expensive pathline integration. A flow-driven seeding strategy is employed to distribute seeds such that only a few of

them need pathline integration while most seeds are placed along the pathlines advected at earlier times by other seeds upstream and,

therefore, the known pathlines can be reused for fast value scattering. To maintain a dense scattering coverage to convey high

temporal-spatial coherence while keeping the expense of pathline integration low, a dynamic seeding controller is designed to decide

whether to advect, copy, or reuse a pathline. At a negligible memory cost, AUFLIC is 9 times faster than UFLIC with comparable image

quality.

Index Terms—Flow visualization, vector field visualization, line integral convolution, unsteady flows, UFLIC, texture synthesis, image

convolution, acceleration.

�

1 INTRODUCTION

UNSTEADY flow visualization remains a challenging
research topic and plays an important role in compu-

tational fluid dynamics. Arrow plots, streamlines, and
stream surfaces are straightforward approaches for steady
flow visualization. Commodity graphics cards can be
leveraged to accelerate rendering of primitives for real-time
visualization. However, inappropriate seed placement may
either produce cluttered images or display the field only at
a local, discrete, and coarse level. To address this problem,
van Wijk proposed a texture synthesis technique, called
spot noise [1], to visualize flow data by distributing elliptic
texture splats within the field and warping the spots in the
flow direction. Later Cabral and Leedom [2] presented line
integral convolution (LIC) to compute each output pixel
value by convolving a white noise texture along the
windowed streamline symmetrically advected in both
directions from the pixel location. LIC synthesizes an image
that provides a global dense representation of the flow,
analogous to the resulting pattern of wind-blown sand.
Since then, there have been many optimizations of and
extensions to LIC such as fast and resolution independent
LIC [3], parallel LIC [4], LIC on curvilinear grids [5], LIC on
triangulated surfaces [6], magnitude LIC based on multi-
frequency noise [7], oriented LIC [8], enhanced LIC with
flow feature detection [9], LIC with dye advection [10],
volume LIC [11], [12], and HyperLIC for tensor field
visualization [13]. Heidrich et al. [14] incorporated indirect
pixel texture addressing and additive/subtractive texture
blending to accelerate streamline integration and texture

convolution in LIC. Preuber and Rumpf [15] adopted
another texture-based method, anisotropic nonlinear diffu-
sion, to low-pass filter a noise texture along streamlines, but
enhance edges in the orthogonal flow direction. Later
Burkle et al. [16] adapted this approach with texture
transport for unsteady flows.

The tremendous advances in computing power and
storage capacity enable high-fidelity numerical simulation
of unsteady flows. Unsteady flow visualization provides
more insight into the flow evolution than can be revealed
using instantaneous visualization techniques. Pathlines and
streaklines [17] are often used to show particle traces in
time-varying flow fields. Unsteady flow volumes [18], the
adaptive tetrahedralization of a union of streaklines, are an
intuitively more understandable representation of
3D evolving flows. Max and Becker [19] applied texture
mapping in either forward mesh warping or backward
texture coordinates advection for time-dependent flow
visualization. Forssell and Cohen [5] used pathlines as
convolution paths in LIC to visualize unsteady flows.
Verma et al. [20] presented pseudo-LIC in which pre-
synthesized template textures are mapped on sparsely
placed pathline ribbons to emulate a dense representation
of time-dependent flows. Some methods take advantage of
hardware capabilities to achieve high-performance visuali-
zation. Jobard et al. [21], [22] designed an efficient rendering
pipeline based on indirect pixel texture addressing [14] for
fast texture/dye advection and feature extraction. Weiskopf
et al. [23] exploited the pixel texture unit to visualize time-
varying 3D vector fields.

Van Wijk proposed IBFV [24] in which a sequence of
temporally-spatially low-pass filtered noise textures are
advected via forward texture mapping on warped meshes
in combination with blending of successive frames. This
easy-to-implement, efficient, versatile method can emulate
a wide range of techniques such as particles, arrow plots,
streamlines, timelines, spot noise, LIC, and topological

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 113

. The authors are with the ERC/GeoResources Institute, Mississippi State
University, PO Box 9627, Mississippi State, MS 39762-9627.
E-mail: {zhanping, rjm}@erc.msstate.edu.

Manuscript received 25 June 2003; revised 29 Apr. 2004; accepted 12 May
2004; published online 13 Jan. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0048-0603.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

analysis at high frame rates using basic hardware features.
IBFV was then used to visualize flow on 3D curved surfaces
and enhance surface shape cuing by means of flow-aligned
textures [25]. IBFV was even extended to 3D flows by
decomposing the 3D advection to planar and longitudinal
advections [26]. Jobard et al. presented LEA [27] to visualize
unsteady flow fields also at high frame rates despite its
independence of hardware acceleration [28]. To compute
each pixel value of a frame, backward integration is used to
retrieve, at the last time step, the contributing particle’s
footprint into which the iteratively advected texture, with
noise injected at in-flow areas, is indexed for the con-
tributed texture value. Successive textures are blended to
create temporal coherence along pathlines in the flow
evolution and short-length directional low-pass filtering is
performed to improve spatial coherence along instanta-
neous streamlines. Visually pleasing effects can be obtained
when arbitrarily shaped field domains are addressed using
contextual masking. Recently, Laramee et al. [29] presented
a novel method based on IBFV and LEA for a direct dense
representation of unsteady flows on arbitrary triangular
surfaces to address large, unstructured, dynamic meshes by
projecting the surface geometry to image space to which
backward mesh advection and successive texture blending
are applied. Weiskopf et al. proposed UFAC [30], which,
based on a generic spacetime-coherent framework, estab-
lishes temporal coherence by property advection along
pathlines while building spatial correlation by texture
convolution along instantaneous streamlines. A well-
known hardware-independent algorithm is unsteady flow
LIC (UFLIC) proposed earlier by Shen and Kao [31]. UFLIC
uses a time-accurate value scattering scheme and a
successive texture feed-forward strategy to achieve very
high temporal and spatial coherence. At each time step, a
value scattering process occurs for which a seed is placed in
each pixel. For this seed, a pathline is integrated along
which the seed’s texture value is scattered to the down-
stream pixels over several time steps. The values received
by each pixel at a time step are accumulated and convolved
to synthesize the corresponding frame.

IBFV, LEA, UFAC, and UFLIC are the most competitive
methods for visualizing unsteady flow fields, each with its
own advantages and disadvantages. Each IBFV frame is the
result of a line integral convolution of a sequence of images
along pathlines. The exponential decay convolution filter
used in IBFV to low-pass filter noise textures is well-suited
for introducing temporal coherence in the animation;
however, the spatial coherence it constructs in each frame
may be insufficient. Flow directions are either noisy or
artificially blurred [30] as the texture scale varies. Second,
the increasing (unsteady) flow complexity greatly compro-
mises the performance unless the field is highly sub-
sampled to create a warping mesh, as was done in [24], [29]
in order to achieve high frame rates. Third, 3D IBFV is
limited in the range of velocities it can display, as stated in
[26]. Fourth, 3D IBFV handles only time-independent
3D flows since time-varying flows require a continuous
update of the velocity texture, which is difficult to achieve.
Finally, IBFV depends on hardware capabilities coupled
with single-step forward integration to achieve high frame
rates. LEA also employs single-step integration, though
backward, to access the last frame for advected texture
values. It resorts to blending successive textures to

represent spatial correlation along a dense set of pathline
segments to approximate short streamlines, but the ex-
ponentially decreasing temporal filter does not produce
sufficient spatial coherence either [30]. Despite the applica-
tion of LIC to suppress aliasing artifacts created where the
noise is advected more than one cell per integration, only
shorter kernels can be used since streamlines would
otherwise significantly deviate from actual pathlines,
causing flashing in the animation and degraded image
contrast. Thus, there exists a trade off between the spatial
coherence in an image and the temporal coherence in the
animation. Flow directions are obscure in low-magnitude
areas when the length of the streaks is proportional to the
velocity magnitude. UFAC was derived from a generic
spacetime-coherent framework, which provides an explicit,
direct, and separate control over temporal coherence and
spatial coherence to emulate IBFV, LEA, and UFLIC.
However, as stated in [30], it still fails to resolve the
inconsistency between temporal and spatial patterns since
the evolution of streamlines along pathlines might not lead
to streamlines of the subsequent time step. Its ad hoc
solution to this problem is limited to only an explicit control
over the length of the spatial structures based on the flow
unsteadiness to retain temporal coherence. In regions where
the flow changes rapidly, the correlated segments along
streamlines have to be very short and even degenerate to
points (particles) to suppress flickering, which inevitably
affects spatial coherence. Finally, UFAC is limited to
DirectX 9.0 compliant GPUs or OpenGL with fragment
support (pixel shader programs). UFLIC possesses the
advantage of conveying very high temporal and spatial
coherence by scattering fed-forward texture values. Value
scattering along a long pathline over several time steps not
only correlates a considerable number of intraframe pixels
to establish strong spatial coherence, but also correlates
sufficient interframe pixels to build tight temporal coher-
ence. Texture feed-forward that takes an output frame, after
noise-jittered high-pass filtering, as the input texture for the
next frame constructs an even closer correlation between
the two consecutive frames to enhance temporal coherence.
Flow directions are clearly depicted in individual images
for instantaneous flow investigation and the animation is
also quite smooth (see http://www.erc.msstate.edu/
~zhanping/Research/FlowVis/AUFLIC/index.html). The
inconsistency between temporal and spatial patterns in
IBFV, LEA, and UFAC is successfully resolved by scattering
fed-forward texture values in UFLIC. Also, UFLIC can be
easily extended to time-varying 3D flows [32]. The low
performance of UFLIC is primarily due to intensive path-
line computation that typically needs over 100 steps of
integration for each pathline. There is a huge potential to
accelerate UFLIC by reducing pathline redundancy and
integration steps.

In this paper, we present Accelerated UFLIC (AUFLIC),
an enhanced version of our earlier work [33], which
increases the performance of UFLIC to near interactive
frame rates. AUFLIC seeks to accelerate value scattering by
circumventing pathline integration as much as possible
while maintaining a dense scattering coverage. A flow-
driven seeding strategy is used to place seeds sparsely to
integrate fewer pathlines. This allows known pathlines to be
reused, with minor corrections, to extract the trajectories of
seeds subsequently placed downstream along the pathlines.

114 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

A dynamic seeding controller is devised to decide whether
a pathline is advected from scratch, copied from that of
another seed in the current scattering process, reused from
the last scattering process, saved for the next scattering
process, or finally deleted. Such an adaptive seed placement
driven by the flow pattern effectively exploits the computa-
tional redundancy of the dense, texture-based flow visua-
lization technique for an order-of-magnitude acceleration
while retaining very high temporal and spatial coherence.

This paper is organized as follows: We first revisit
pathline integration, give an overview of the UFLIC
method, and discuss the bottleneck. Next, we present our
algorithm in detail. Then, we give some results to
demonstrate the image quality and the acceleration. We
finally conclude this paper with a brief summary and
outlook on future work.

2 BACKGROUND

In this section, we first introduce a fast pathline integration
approach, the fourth order Runge-Kutta integrator with
adaptive step size and error control, for unsteady flow line
advection. We then review the UFLIC method and analyze
the latency of the pipeline.

2.1 Fourth Order Runge-Kutta Integration (RK4)

With the vector varying with time and space, the pathline
advected by a particle is governed by:

dð�ðtÞÞ=dt ¼ �ð�ðtÞ; tÞ;

where �ðtÞ is the particle’s position at time t and �ð�ðtÞ; tÞ is
the vector at �ðtÞ at time t.

The particle’s trajectory over time is traced by integrating
the equation step by step:

�ðtþ�tÞ ¼ �ðtÞ þ
Z tþ�t

t

�ð�ðtÞ; tÞdt:

There are three well-known methods with increasing
accuracy for the integration:

Euler method �ðtþ sÞ ¼ �ðtÞ þ s� �ð�ðtÞ; tÞ
Midpoint method �ðtþ sÞ ¼ �ðtÞ þ s� �ð�ðtÞ þ �ð�ðtÞ; tÞ

�s=2; tþ s=2Þ

RK4 ��0 ¼ s� �ð�ðtÞ; tÞ
��1 ¼ s� �ð�ðtÞ þ��0=2; tþ s=2Þ
��2 ¼ s� �ð�ðtÞ þ��1=2; tþ s=2Þ
��3 ¼ s� �ð�ðtÞ þ��2; tþ sÞ

�ðtþ sÞ ¼ �ðtÞ þ��0=6þ��1=3þ��2=3þ��3=6;

where s ¼ �t is the integration step size.
Temporal-spatial interpolation is performed intensively

during the RK4 integration to evaluate intermediate vectors.
As a multistage integrator, the RK4 method for unsteady
flow advection actually achieves only second-order accu-
racy when temporal interpolation is based on the assump-
tion that the flow varies linearly between two time steps
[17]. Adaptive step-sizing based on local error control is
usually incorporated into the RK4 method to accelerate
pathline integration with a user-defined error tolerance. A
straightforward way to estimate the local error is to

compare the two solutions obtained from the Runge-Kutta
with consecutive orders. An alternative for fast error
estimation is to use embedded Runge-Kutta formulae.
Successive positions returned by the RK4 integrator with
adaptive step size and error control (RK4-ASSEC) may be
further interpolated using a cubic Hermite polynomial for
texture sampling by equal distance [34]. The RK4-ASSEC,
coupled with cubic Hermite interpolation, is a faster
integrator with more accuracy and flexibility than the Euler
method for pathline advection.

2.2 Unsteady Flow Line Integral Convolution

When using LIC to visualize a steady flow field, for each
pixel of the output image, the contributing pixels are first
located along the bidirectionally advected streamline and
then the noise texture values are indexed for convolution.
Because the forward and backward streamlines are intrin-
sically correlated in a steady flow, low-pass filtering can be
implemented in either image space or object space.
However, LIC cannot be directly applied to an unsteady
flow to establish spatial coherence since the forward and
backward pathlines may be uncorrelated [31]. Also, the
resulting animation fails to maintain temporal coherence
due to the different convolution paths along which the filter
phase is shifted.

UFLIC [31] is an object-space texture synthesis technique
designed to visualize unsteady flow fields. The two
important components, the time-accurate value scattering
scheme and the successive texture feed-forward strategy,
are based on the observation that particles leave their
footprints, i.e., deposit their properties, at downstream
positions as the flow runs over time. At each time step, a
scattering process (SCAP, Fig. 1) occurs for which a seed is
released, i.e., discharged, from each pixel as a contributor to
scatter the texture value to the downstream pixels along the
newly advected pathline in its life span that usually ranges
through several time steps. On the other hand, as a receiver,
each pixel keeps several stamped buckets in a ring buffer to
accumulate deposited values. A frame is obtained by
convolving the values that each pixel has received and
stored in the bucket stamped with the frame index, creating
spatial coherence in the output image. To enhance temporal
coherence, the resulting texture is high-pass filtered with
noise jittering and then fed forward as the input texture to
the next SCAP. Fig. 2 shows the UFLIC pipeline.

In the UFLIC pipeline, over 90 percent of the time
consumption stems from the SCAP, in particular, from
computationally expensive pathline integration that in-
volves intensive temporal-spatial vector interpolation and,
usually, pixel-by-pixel line clamping. It is worth mentioning
that pathlines advected in an SCAP are not used in the
subsequent SCAPs. In other words, the existing correlation
between the SCAPs is neglected instead of being exploited.
This situation is illustrated in Fig. 1. In SCAP k, a seed
released from pixel center A at time step k advects a
pathline in the life span to scatter the value to the
downstream pixels. B, C, and D are the points through
which the seed passes at time step kþ 1, kþ 2, and kþ 3,
respectively. A seed, if released from B, C, and D at time
step kþ 1, kþ 2, and kþ 3 in SCAP kþ 1, kþ 2, and kþ 3,
respectively, would follow the same trajectory as the
pathline advected in SCAP k. B, C, and D could be therefore
extracted from the pathline as the seeding positions in
SCAP kþ 1, kþ 2, and kþ 3 to avoid pathline integration.
However, in UFLIC, seeds are always released from pixel

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 115

centers to advect new pathlines, which slows down the

value scattering process.
In the following section, we propose an accelerated

UFLIC algorithm. It is based on a flow-driven seeding

strategy by which fewer seeds are sparsely released in the

flow direction to advect only a small number of pathlines
along which more seeds are then released to circumvent
pathline integration. A dynamic seeding controller is used
to decide whether to advect, copy, or reuse a pathline so as

116 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

Fig. 1. A seed is released from pixel center A to advect a pathline in
SCAP k, which begins at time step k (life span = 4 time steps) and
generates frame k. Frame k� 1 is high-pass filtered with noise jittering
and then taken as the input texture for SCAP k (white noise is used for
k ¼ 0).

Fig. 2. The UFLIC pipeline.

Fig. 3. The flow-driven seeding strategy (life span = 4 time steps). (a) In SCAP k, root seed A is first released from the pixel center to advect a
pathline for value scattering. Sibling seeds (hollow red) are then released and the pathline is copied, with minor corrections, to scatter their values. At
the end of SCAP k, the first pathlet is deleted. Seeds B (son of A), C (son of B), D, E, other seeds (hollow blue), and regular sample points (hollow
black) are saved for SCAP kþ 1. (b) In SCAP kþ 1, B becomes an inheritor seed and C becomes the son seed. The pathline saved in SCAP k is
inherited by seed B and is extended with one pathlet forward for complete value scattering.

to scatter enough particles while minimizing pathline

integration.

3 AUFLIC

It is mandatory in UFLIC that nearly every pixel receives

enough particle values in the value scattering process that

pixels can be fully correlated to show temporal-spatial

coherence. Insufficient particle scattering implies fewer hits

are received and less temporal-spatial correlation is

exploited, which may introduce undesirable artifacts such

as lack of line smoothness, discontinuities in the flow

pattern, missing features, and flashing in the animation. In

each SCAP, the UFLIC algorithm advects a new pathline

from every pixel center and forcibly terminates the pathline

when the life span expires, even if it has not run outside the

field or encountered any critical points. If a flexible seeding

rule is used, fewer pathlines need to be advected in an

SCAP and they may be copied or later reused to obtain

traces for other particles to achieve a dense scattering

coverage. We adopt such a flexible seeding rule as follows:

. Spatial flexibility: A seed may not necessarily be
released exactly from a pixel center as long as the
seed is within the pixel.

. Temporal flexibility: A seed may not necessarily be
released exactly at an integer time step; instead, it

may be released at a fractional time shortly after the
SCAP begins.

In this section, we present an accelerated UFLIC
algorithm, AUFLIC, that uses a flow-driven seeding
strategy to release seeds along known pathlines so that
only a few of them need to actually advect pathlines; the
rest can simply extract their pathlines using pathline
copying and pathline reuse. Pathline copying is an intra-
SCAP operation by which a seed’s trace in the life span is
used, with only minor corrections, for those of other seeds
successively released at several positions downstream
along the known trace at fractional times shortly after the
SCAP begins, as long as they are released at the same time
as the initial seed travels through their seeding positions.
Each of these seeds travels through a different-length part
of the same curve during the first time step of the SCAP, but
they synchronously run through the same trace over the
remaining time steps. Pathline reuse is an inter-SCAP
operation by which the position a pathline passes through
within a fractional time into the second time step of the
previous SCAP is used to release a new seed at exactly the
same global time, but in the first time step of the current
SCAP. This seed’s trace is obtained by reusing the latter part
of the known pathline from the previous SCAP, appended
with integration over an additional time step. Pathline
copying applies whether a pathline is obtained by reuse or
brute-force integration. To fulfill the seeding strategy for a
dense scattering coverage at a low computational cost,

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 117

Fig. 4. Pseudocode for the dynamic seeding controller (SIBLINGS: the maximum number of sibling seeds).

118 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

Fig. 5. Seed distribution maps in SCAP 0 and 1 (red, green, and blue pixels for root, inheritor, and sibling seeds, respectively, SIBLINGS = 6). (a) The
LIC image of a flow field at time step 0. (b) The seed distribution in SCAP 0 (sibling seeds not displayed) without CurSema semi-opening in the
opposite flow direction. The bottom-half flow runs from right to left, which is against the regular order of releasing root seeds. No pixels are reserved
for releasing downstream sibling seeds. Note how densely the root seeds are placed. (c) The seed distribution in SCAP 0 (sibling seeds not
displayed) with CurSema semi-opening in the opposite flow direction. Note how evenly and sparsely the root seeds are placed. (d) The seed
distribution in SCAP 0 (sibling seeds displayed). (e) The seed distribution in SCAP 1 (sibling seeds not displayed). (f) The seed distribution in SCAP
1 (sibling seeds displayed).

Fig. 6. Pixel ring-buffer and the header information (life span = 4 time steps).

AUFLIC uses a dynamic seeding controller to choose for
each seed between pathline advection, copying, and reuse.

3.1 Flow-Driven Seeding Strategy

Given the spatial and temporal seeding flexibilities, a
pathline can be evenly interpolated using a cubic Hermite
polynomial to generate sample points, some of which are
chosen as potential seeding positions for several SCAPs. We
delay the discussion of whether a seed is actually released
from a potential seeding position until Section 3.2. Those
not chosen as potential seeding positions are called regular
sample points. We define seed types (Fig. 3) along an
evolving pathline in the SCAPs based on genealogical
concepts—birth, propagation, and death. Just as a person’s
title depends on both his level in the family structure and
his role in his generation, a seed’s name depends on both its
release time relative to the current SCAP and the way the
pathline is obtained. In SCAP k (Fig. 3a) that begins at time
step k, particle A, called a father seed, is the first seed
released along a pathline in the current SCAP. Seed A is
specifically called a root seed because it advects the pathline
from scratch. The hollow red particles are sibling seeds of the
father seed that are released at some fractional times shortly
after the SCAP begins (at time step k), from the same
positions through which the father seed travels at these
times. Except for the difference in release time and, hence,
in path length during the first time step of the SCAP, the
sibling seeds and the father seed move along the same trace
synchronously. Given the pathline of the father seed, those
of the sibling seeds are easily extracted by pathline copying
with minor corrections. Particles B, C, D, and E are son seeds.
They will be first released along the pathline in the
subsequent SCAPs. Specifically, seed B is the son seed of
A and will become the father seed in the next SCAP. The
father seed and the sibling seeds, once released, scatter their
texture values to the succeeding pixels hit by the pathline
before convolution is performed to synthesize frame k. With
the first pathlet (i.e., the portion of a pathline advected
during one time step) cut off, the pathline is saved for use in
the next SCAP.

In SCAP kþ 1 (Fig. 3b) beginning at time step kþ 1,
seed B, a son seed in SCAP k, becomes a father seed. It is
specifically called an inheritor seed since it inherits a pathline
from SCAP k. It does not need to advect a pathline, but,

instead, can simply reuse the partial pathline saved in
SCAP k since the two SCAPs overlap from time step kþ 1 to
kþ 4. In order to scatter the seed value over the whole life
span, the pathline is integrated through another time step to
generate an additional pathlet. Seeds F, G, H, and I are
released for value scattering along the pathlines that are
obtained by copying and slightly truncating the pathline of
seed B, their older sibling. Seed C is the elected son seed of
seed B and so forth. Only father seeds and sibling seeds can
be released in an SCAP. Collectively, root and inheritor
seeds are called father seeds. The father pixel (of a pathline),
for short, refers to the pixel hit by the father seed. Similar
pixel names refer to the pixels hit by other kinds of seeds.

As described above, such a flow-driven seeding strategy
makes it possible to scatter more particles using less
pathline advection. To reserve positions for sibling seeds,
the flow-driven seeding strategy subsamples the field in the
flow direction to release sparse father seeds. However,
father seeds are densely released in the orthogonal flow
direction to deal with flow divergence. The advantage of the
flow-driven seeding strategy over random seeding schemes
is that it can be easily implemented using a dynamic
seeding controller (Section 3.2) to adaptively choose
between pathline advection and pathline reuse for better
overall performance. It is difficult for a random seeding
scheme to make use of inter-SCAP correlation since it does
not take flow structures into account.

The spatial flexibility introduces an arbitrary fractional
offset of a seed within the pixel, which may help to reduce
artifacts. The texture value is obtained either by bilinear
interpolation or by nearest-neighbor indexing. The tempor-
al fractional offset should be small enough that not too
many sibling seeds are chosen since a larger temporal offset
means a shorter life span. To reuse a pathline in as many
SCAPs as possible, it is advected forward until it runs
outside the field, encounters a critical point, or is killed by
the dynamic seeding controller.

3.2 Dynamic Seeding Controller

Now, we present a dynamic seeding controller to imple-
ment the flow-driven seeding strategy, i.e., to achieve a
dense scattering (or seeding) coverage with a small number
of root seeds and a significant number of inheritor and
sibling seeds. The controller governs the seed distribution

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 119

Fig. 7. Using hybrid value scattering to simplify sibling seed value scattering in pathline copying. (a) The father seed, sibling seeds, and regular

sample points on a pathline (flattened). (b) Scatter only the father seed using the hybrid value (but increase the hit counter by four each time) in

combination with minor corrections to simplify sibling seed value scattering in pathline copying.

in an SCAP to decide whether a potential seed is actually
released or which seed is actually released from each pixel
when many inheritor seeds, many sibling seeds, and a root
seed are potentially released from the same pixel in an
SCAP. There is a trade off between pathline reuse and
advection: The more pathlines reused, the fewer pathlines
advected in the current SCAP; the fewer pathlines reused,
the more pathlines advected in the next SCAP. This
situation implies the computational cost could severely
fluctuate over SCAPs. To obtain a nearly constant frame
rate, such a controller seeks to balance pathline reuse and
advection in each SCAP.

We assign two semaphores, CurSema and NxtSema, to
each pixel to ensure no more than one seed is released from
it in an SCAP. Associated with a semaphore are some states
and operations:

. Open state (0). Either a father seed or a sibling seed
can be released from the pixel.

. Semi-open state (1). Only a sibling seed can be
released from the pixel.

. Closed state (2). No more seeds can be released from
the pixel.

. Open operation. Make a semaphore open.

. Semi-open operation. Make a semaphore semi-open.

. Close operation. Make a semaphore closed.

A CurSema indicates the pixel status for the current SCAP

and determines what seed, if any, may be released from the

pixel. A NxtSema indicates the pixel status for the next SCAP

and decides whether a pathline whose son seed falls within

the pixel is saved or deleted. When an SCAP begins, the

CurSema array is first refreshed with the NxtSema array and

120 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

Fig. 8. Two images generated by (a) UFLIC and (b) AUFLIC from the same weather data (576� 291 data points).

the latter is opened. Then, the two semaphore arrays are
dynamically updated as the SCAP runs.

Once a seed is released from a pixel, the CurSema is
closed to block further seed release from the pixel in the
SCAP. An SCAP begins with releasing inheritor seeds.
Then, root seeds are released from the pixels still with open
CurSemas in a regular order, i.e., from top to bottom and
left to right. Some sibling seeds are released each time a
father seed is released. To update semaphores, we define a
local operator for each father seed. Given a father seed in a
pixel, independent of whether the pathline is advected or
reused, we close the CurSema and semi-open the NxtSema
so that father seeds and sibling seeds are released from the
pixel in alternate SCAPs. In the flow direction, sibling seeds
are released from some pixels and the CurSemas are closed.
In the opposite flow direction, some pixel CurSemas are
semi-opened, if still open, to reserve pixels for sibling seeds
in order to deal with a bottom-to-top or right-to-left flow for
which the advantage of the flow-driven seeding strategy
might otherwise degrade as most sibling seeds would be
blocked due to falling within the pixels that are already hit
by root seeds in a regular seeding order (Fig. 5b). Along
each border of the field, a small margin is usually left
without semaphore semi-opening to enable dense seed
release from in-flow borders. The pathline is deleted unless
the son pixel’s NxtSema is open; otherwise, it is saved and
the NxtSema is closed.

Fig. 4 shows the pseudocode for the dynamic seeding
controller using the local semaphore operator to implement
the flow-driven seeding strategy. Root, inheritor, and
sibling seeds are systematically distributed for optimal
performance. A significant amount of inheritor seeds are
released to reuse the pathlines saved in the last SCAP, while
only a small number of root seeds are needed to advect new
pathlines, most of which are saved. A very large number of
sibling seeds are released to copy pathlines from these
father seeds. The seeding controller adjusts the ratio of root
to inheritor seeds to quickly converge to a ratio that enables
a nearly constant computational cost per SCAP and
accordingly a constant frame rate.

Fig. 5 shows the seed distribution maps in two
consecutive SCAPs. The maps use red pixels for root seeds,
green pixels for inheritor seeds, and blue pixels for sibling
seeds to illustrate the percentages of the pathlines that are
obtained by advection, reuse, and copying, respectively, in
an SCAP. Note that the distribution patterns just reflect the
flow structures. A dense scattering coverage can be
maintained by scattering 70 percent of the particles with
only 10~15 percent of the pathline integrations required in
the original UFLIC algorithm.

3.3 Save, Reuse, and Copy Pathlines

To save, reuse, and copy a pathline for value scattering,
AUFLIC uses a box kernel and an RK4-ASSEC pathline
integrator that generates evenly sampled (by SAMPLEN)
points using cubic Hermite interpolation. Since AUFLIC
ignores the fading effect [31] used in UFLIC, the contribu-
tion a seed with texture value tex makes to any downstream
sample pixel at time t is:

Cunnormalized ¼ tex� SAMPLEN

that is accumulated in the sample pixel’s bucket stamped
with btc and the weight is:

W ¼ 1=ðhits� SAMPLENÞ;

where hits is the total number of times the bucket receives

values. Since SAMPLEN is omitted through normalization,

we can just accumulate tex to the bucket and increase the

hit counter. To scatter the texture value of a seed, we only

need to know the seed pixel’s index, or its coordinate when

texture interpolation is used, and the receiver pixel’s index.
Pathline reuse involves iterative storage and access, so we

use a pixel ring-buffer attached to a header (Fig. 6) to save a

pathline that is then inserted into a global pathline list. The

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 121

Fig. 9. Two images generated by (a) UFLIC and (b) AUFLIC from the

same vortex data (397� 397 data points).

ring-buffer size (SIZE) is set as the maximum number of
sample points along a pathline in its life span. Initially, the
first pathlet is ignored and only the remaining pathlets are
sequentially saved in the ring-buffer that records sample
pixel indices ranging from 0 to XRES � YRES, the resolu-
tion of the field. To reuse thepathline, the son seed changes its
role to an inheritor seed and is released to extend the pathline
for a new pathlet. To save the pathline, the header field is
simply shiftedand rewritten to cut off the first pathlet, free the
cells, and allocate some unused cells after the end cell for
concatenating the new pathlet. The pixel ring-buffer is thus
accessed cyclically.

Brute-force value scattering along a pathline begins with
releasing the father seed to scatter the texture value. Then,
each of the unblocked sibling seeds is released to scatter its
value along the known pathline. For a pathline reused by an
inheritor seed, multiple accesses to the pixel ring-buffer may
be expensive due to intensive wrap operations. Even for a
pathline advected by a root seed, it is tedious to access a
dynamic pixel array many times to scatter the sibling seed
values. Each of the sibling seeds’ experience differs only
slightly from the father seed in the first time step of the SCAP.
To simplify pathline copying for fast value scattering, we use
hybrid value scattering, which needs to access the pixel ring-
buffer or dynamic pixel array only once to scatter both the
father seed value and the sibling seed values.We first add the
values of the unblocked sibling seeds to the father seed value
and then scatter it as usual. We correct the error of value
scattering by simply undoing the contribution a sibling seed,
as a component of the “hybrid seed,” makes to its upstream
samples in both the accumulation bucket and the hit counter
(Fig. 7). Prior tohybridvalue scattering, the siblingseedsneed
to be located and checked to see if they are blocked,which is a
very fast process.

4 RESULTS AND DISCUSSIONS

We compared AUFLIC with UFLIC in image quality and
computational performance using two unsteady flow data
sets. The weather data set has 41 time steps and a resolution
of 576� 291. The vortex data set has 101 time steps and a
resolution of 397� 397. The computer used for the experi-
ments was an SGI Onyx2 with four 400MHZ MIPS R12000
processors and 4GB memory.

AUFLIC and UFLIC use exactly the same code for data
loading, bucket convolution, noise-jittered high-pass filter-
ing, magnitude-based color mapping, and image output.
The only difference is in the value scattering process. In
both algorithms, original vector magnitudes are scaled and
clamped in the data loading stage so that, in any SCAP, the
length of a pathline or the number of sample pixels
receiving a scattered particle value falls within a fixed
range. The maximum value is set as the pixel ring-buffer
size in AUFLIC. In all the experiments, the life span is set to
four time steps for both UFLIC and AUFLIC. In order to
produce 41 frames and 101 frames for the two data sets,
respectively, the life span decreases in each of the last four
SCAPs by one until it is zero in the last SCAP.

Fig. 8 shows the images produced by UFLIC and
AUFLIC from the weather data set. Fig. 9 shows a pair of
images generated by the two algorithms from the vortex
data set. All the images are color mapped based on the
vector magnitude, with blue being lowest and red highest.
The images produced by AUFLIC are nearly the same as
those produced by UFLIC. No flow features in the UFLIC
images are missing in the AUFLIC images and no
additional artifacts are introduced in the latter. Even though
the fading effect in UFLIC is removed in AUFLIC, the image
quality is comparable.

The few differences between the two images are due to
different pathlines being traced since UFLIC uses a Euler
integrator and AUFLIC uses RK4-ASSEC. Another factor is
SAMPLEN, the sampling interval, which may prevent a
nonsampled pixel from receiving a scattered value in
AUFLIC that it would receive in UFLIC. SAMPLEN is
usually less than one pixel and should not be so large that
features are missed. In Fig. 8 and Fig. 9, it is set to 2/3.

Table 1 shows the timebreakdownsofUFLICandAUFLIC
for visualizing the twodata sets. Theoretically, AUFLIC takes
the same amount of time as UFLIC in data loading, bucket
convolution, noise-jittered high-pass filtering, color map-
ping, and imageoutputbecause the samecode isused in these
stages. As far as value scattering is concerned, AUFLIC
consumes much less time than UFLIC due to less pathline
integration. AUFLIC generates a frame through the whole
pipeline about nine times faster than UFLIC.

Fig. 10 shows the statistics for the seeds and pathlines in
the two data sets visualized using AUFLIC. The average

122 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

TABLE 1
Component Timings Comparing AUFLIC and UFLIC for Generating All Frames of the Flow Data Sets

percentages of inheritor seeds, root seeds, and sibling seeds
released each SCAP in the weather flow field are 19.39 per-
cent, 12.96 percent, and 39.36 percent, respectively. In the
vortex flow field, the average percentages are 21.37 percent,
11.49 percent, and 37.77 percent. Over 70 percent scattering

coverage is achieved with only this small amount of
pathline advection. Of the pathlines advected in each
SCAP, 62.06 percent and 71.20 percent are saved, respec-
tively, on average in pixel ring-buffers. About 40 percent of
the pathlines in the pathline list are deleted in each SCAP

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 123

Fig. 10. Statistics in visualizing the two data sets using AUFLIC. (a) Weather data set (576� 291, 41 time steps). (b) Vortex data set (397� 397,

101 time steps).

after being reused. The dynamic seeding controller not only
fulfills the flow-driven seeding strategy, but also controls
the seed placement for better overall performance. Rapid
convergence to an equilibrium is exhibited in the curves in
Fig. 10. The fast convergence gives rise to a low-variance
frame generation rate (Fig. 11) and a nearly constant
memory utilization for saving pathlines (Fig. 12). AUFLIC
can be applied to high-resolution unsteady flow visualiza-
tion because of the small memory footprint.

5 CONCLUSIONS AND FUTURE WORK

We have presented AUFLIC, an accelerated UFLIC algo-
rithm. Based on a flow-driven seeding strategy, AUFLIC
releases seeds in the flow direction and, therefore, available
pathlines can be copied, saved, and reused to scatter many
more particles with fewer pathline integrations in the value
scattering process. To implement this strategy, a dynamic
seeding controller is designed to intelligently distribute seeds
for dense coverage and better overall performance at a very
lowmemory cost. AUFLIC is about 9 times faster thanUFLIC
with comparable image quality. Wewere able to visualize an
unsteady flow fieldwith 160,000particles at a near interactive
frame rate without additional hardware support.

As for future work, we would like to further enhance
AUFLIC by using shorter pathlines or shorter life spans
without image quality degradation. A characteristic of the
flow-driven seeding strategy is that the output image
resolution may be independent of the flow field resolution

as is the case in fast LIC [3]. In order to generate a zoomed

image (e.g., k times), the same root and inheritor seeds are

released in vector space as usual andmapped to image space

to locate root and inheritor pixels. (SAMPLEN/k) is used as

the sampling interval to scatter k times asmany siblingpixels’

values by copying the pathline. The pathline is then copied

based on the offset in the orthogonal flow direction. The

advantage is that the same amount of pathline integration is

needed to obtain higher image resolutions.

ACKNOWLEDGMENTS

This work was supported by the US Department of Defense

HPCMP and US National Science Foundation grant EPS-

0132618. The authors would like to thank Dr. Han-Wei Shen

for his help with UFLIC questions, implementation details,

and valuable suggestions. The unsteady vortex flow data

set is courtesy of Dr. Ravi Samtany and Dr. Han-Wei Shen.

The authors are grateful to Michael Chupa for helping make

the accompanying movies. Thanks also go to the anon-

ymous reviewers for their valuable comments.

REFERENCES

[1] J.J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualiza-
tion,” Computer Graphics, vol. 25, no. 4, pp. 309-318, July 1991.

[2] B. Cabral and L. Leedom, “Imaging Vector Fields Using Line
Integral Convolution,” Proc. ACM SIGGRAPH ’93, pp. 263-270,
Aug. 1993.

124 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005

Fig. 11. Total time for AUFLIC to generate each frame (the last two frames omitted due to very small values).

Fig. 12. Memory required for AUFLIC to save pathlines (the last two SCAPs omitted due to very small values).

[3] D. Stalling and H.-C. Hege, “Fast and Resolution Independent
Line Integral Convolution,” Proc. ACM SIGGRAPH ’95, pp. 249-
256, Aug. 1995.

[4] D. Stalling, M. Zockler, and H.-C. Hege, “Parallel Line Integral
Convolution,” Proc. First Eurographics Workshop Parallel Graphics
and Visualization, pp. 111-128, Sept. 1996.

[5] L.K. Forssell and S.D. Cohen, “Using Line Integral Convolution
for Flow Visualization: Curvilinear Grids, Variable-Speed Anima-
tion, and Unsteady Flows,” IEEE Trans. Visualization and Computer
Graphics, vol. 1, no. 2, pp. 133-141, June 1995,

[6] C. Teitzel, R. Grosso, and T. Ertl, “Line Integral Convolution on
Triangulated Surfaces,” Proc. Fifth Int’l Conf. in Central Europe
Computer Graphics and Visualization (WSCG97), pp. 572-581, Feb.
1997.

[7] M.-H. Kiu and D.C. Banks, “Multi-Frequency Noise for LIC,” Proc.
IEEE Visualization ’96, pp. 121-126, 1996.

[8] R. Wegenkittl, E. Groller, and W. Purgathofer, “Animating Flow
Fields: Rendering of Oriented Line Integral Convolution,” Proc.
Computer Animation ’97, pp. 15-21, June 1997.

[9] A. Okada and D.L. Kao, “Enhanced Line Integral Convolution
with Flow Feature Detection,” Proc. IS & T/SPIE Electronics
Imaging ’97, pp. 206-217, Feb. 1997.

[10] H.-W. Shen, C. Johnson, and K.-L. Ma, “Visualizing Vector Fields
Using Line Integral Convolution and Dye Advection,” Proc. IEEE
Symp. Volume Visualization ’96, pp. 63-70, Oct. 1996.

[11] V. Interrante and C. Grosch, “Strategies for Effectively Visualizing
3D Flow with Volume LIC,” Proc. IEEE Visualization ’97, pp. 421-
424, Oct. 1997.

[12] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl, “Interactive
Exploration of Volume Line Integral Convolution Based on 3D-
Texture Mapping,” Proc. IEEE Visualization ’99, pp. 233-240, Oct.
1999.

[13] X. Zheng and A. Pang, “HyperLIC,” Proc. IEEE Visualization ’03,
pp. 249-256, Oct. 2003.

[14] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl, “Applica-
tions of Pixel Textures in Visualization and Realistic Image
Synthesis,” Proc. ACM Symp. Interactive 3D Graphics, pp. 127-134,
Apr. 1999.

[15] T. Preuber and M. Rumpf, “Anisotropic Nonlinear Diffusion in
Flow Visualization,” Proc. IEEE Visualization ’99, pp. 325-332, Oct.
1999.

[16] D. Burkle, T. Preuber, and M. Rumpf, “Transport and Anisotropic
Diffusion in Time-Dependent Flow Visualization,” Proc. IEEE
Visualization ’01, pp. 61-67, Oct. 2001.

[17] D.A. Lane, “Scientific Visualization of Large-Scale Unsteady Fluid
Flows,” Scientific Visualization, G.M. Nielson, H. Hagen, and H.
Muller, eds., pp. 125-145, Los Alamitos, Calif.: IEEE CS Press,
1997.

[18] B.G. Becker, D.A. Lane, and N.L. Max, “Unsteady Flow Volumes,”
Proc. IEEE Visualization ’95, pp. 329-335, 1995.

[19] N. Max and B. Becker, “Flow Visualization Using Moving
Textures,” Data Visualization Techniques, C. Bajaj, ed., pp. 99-105,
John Wiley and Sons Ltd., 1999.

[20] V. Verma, D. Kao, and A. Pang, “PLIC: Bridging the Gap between
Streamlines and LIC,” Proc. IEEE Visualization ’99, pp. 341-348,
Oct. 1999.

[21] B. Jobard, G. Erlebacher, and M.Y. Hussaini, “Hardware-Assisted
Texture Advection for Unsteady Flow Visualization,” Proc. IEEE
Visualization ’00, pp. 155-162, Oct. 2000.

[22] B. Jobard, G. Erlebacher, and M.Y. Hussaini, “Tiled Hardware-
Accelerated Texture Advection for Unsteady Flow Visualization,”
Proc. 10th Int’l Conf. Computer Graphics & Vision (Graphicon 2000),
pp. 189-196, 2000.

[23] D. Weiskopf, M. Hopf, and T. Ertl, “Hardware-Accelerated
Visualization of Time-Varying 2D and 3D Vector Fields by
Texture Advection via Programmable Per-pixel Operations,” Proc.
Sixth Int’l Fall Workshop Vision, Modeling, and Visualization (VMV
2001), pp. 439-446, Nov. 2001.

[24] J.J. van Wijk, “Image Based Flow Visualization,” Proc. ACM
SIGGRAPH ’02, pp. 745-754, July 2002.

[25] J.J. van Wijk, “Image Based Flow Visualization for Curved
Surfaces,” Proc. IEEE Visualization ’03, pp. 123-130, Oct. 2003.

[26] A. Telea and J.J. van Wijk, “3D IBFV: Hardware-Accelerated 3D
Flow Visualization,” Proc. IEEE Visualization ’03, pp. 233-240, Oct.
2003.

[27] B. Jobard, G. Erlebacher, and M.Y. Hussaini, “Lagrangian-
Eulerian Advection of Noise and Dye Textures for Unsteady
Flow Visualization,” IEEE Trans. Visualization and Computer
Graphics, vol. 8, no. 3, pp. 211-222, July-Sept. 2002.

[28] D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl, “Hardware-
Accelerated Lagrangian-Eulerian Texture Advection for 2D Flow
Visualization,” Proc. Seventh Int’l Fall Workshop Vision, Modeling,
and Visualization (VMV 2002), pp. 77-84, Nov. 2002.

[29] R.S. Laramee, B. Jobard, and H. Hauser, “Image Space Based
Visualization of Unsteady Flow on Surfaces,” Proc. IEEE Visualiza-
tion ’03, pp. 131-138, Oct. 2003.

[30] D. Weiskopf, G. Erlebacher, and T. Ertl, “A Texture-Based
Framework for Spacetime-Coherent Visualization of Time-Depen-
dent Vector Fields,” Proc. IEEE Visualization ’03, pp. 107-114, Oct.
2003.

[31] H.-W. Shen and D.L. Kao, “A New Line Integral Convolution
Algorithm for Visualizing Time-Varying Flow Fields,” IEEE Trans.
Visualization and Computer Graphics, vol. 4, no. 2, pp. 98-108, Apr.-
June 1998.

[32] Z. Liu and R.J. Moorhead II, “Visualizing Time-Varying Three-
Dimensional Flow Fields Using Accelerated UFLIC,” Proc. 11th
Int’l Symp. Flow Visualization, pp. 1-10, Aug. 2004.

[33] Z. Liu and R.J. Moorhead II, “AUFLIC: An Accelerated Algorithm
for Unsteady Flow Line Integral Convolution,” Proc. VisSym2002,
IEEE TCVG/EuroGraphics, pp. 43-52, May 2002.

[34] H.C. Hege and D. Stalling, “LIC: Acceleration, Animation, and
Zoom,” Texture Synthesis with Line Integral Convolution, Course No.
8, Proc. ACM SIGGRAPH ’97 Conf., pp. 17-49, Aug. 1997.

Zhanping Liu received the PhD degree in
computer science (2000), the MS degree in
computer science (1997), and the BS degree in
mathematics (1992) from Peking University,
TianJin Normal University, and NanKai Univer-
sity, respectively, in the People’s Republic of
China. He is a postdoctoral associate with the
Visualization, Analysis, and Imaging Lab in the
ERC/GRI at Mississippi State University. Prior to
this position, he was a postdoctoral associate

with the Micro-CT Lab in the Department of Radiology at the University
of Iowa from 2000 to 2001. His research interests include computer
graphics and scientific visualization, particularly flow visualization and
volume rendering. He is a member of the ACM SIGGRAPH and the
IEEE Computer Society.

Robert J. Moorhead II received the PhD degree
in electrical and computer engineering and the
MSEE degree from North Carolina State Uni-
versity in 1985 and 1982, respectively. He
received the BSEE degree summa cum laude
and with research honors from Geneva College
in 1980. He is the director of the Visualization,
Analysis, and Imaging Lab in the GeoResources
Institute and a professor of electrical and
computer engineering at Mississippi State Uni-

versity. He previously worked as a research staff member in the Imaging
Technologies Department at the IBM T.J. Watson Research Center from
1985 to 1988. He has authored more then 95 papers or book chapters on
visualization, image processing, and computer communications. He has
received funding from NSF, ARPA, ONR, NRL, AFOSR, the Army
Waterways Experiment Station (now ERDC), the Naval Oceanographic
Office, NASA, Raytheon, CSC, and Logicon. He was the lead conference
cochair for the IEEE Visualization ’97 Conference, the chair of the IEEE
Computer Society’s Technical Committee on Visualization and Graphics
in 1999 and 2000, and a papers cochair for the IEEE Visualization 2002
and 2003 Conference. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU AND MOORHEAD: ACCELERATED UNSTEADY FLOW LINE INTEGRAL CONVOLUTION 125

