
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

An Advanced Evenly-Spaced Streamline
Placement Algorithm

Zhanping Liu, Robert J. Moorhead II, Senior Member, IEEE, and Joe Groner, Student Member, IEEE

Abstract—This paper presents an advanced evenly-spaced streamline placement algorithm for fast, high-quality, and robust
layout of flow lines. A fourth-order Runge-Kutta integrator with adaptive step size and error control is employed for rapid accurate
streamline advection. Cubic Hermite polynomial interpolation with large sample-spacing is adopted to create fewer evenly-spaced
samples along each streamline to reduce the amount of distance checking. We propose two methods to enhance placement
quality. Double queues are used to prioritize topological seeding and to favor long streamlines to minimize discontinuities.
Adaptive distance control based on the local flow variance is explored to reduce cavities. Furthermore, we propose a universal,
effective, fast, and robust loop detection strategy to address closed and spiraling streamlines. Our algorithm is an order-of-
magnitude faster than Jobard and Lefer’s algorithm [8] with better placement quality and over 5 times faster than Mebarki et al.’s
algorithm [9] with comparable placement quality, but with a more robust solution to loop detection.

Index Terms—Flow visualization, evenly-spaced streamlines, streamline placement, seeding strategy, closed streamlines.

1 INTRODUCTION
There has been significant research on texture-based flow
visualization such as spot noise [1], LIC [2], Fast LIC [3], UFLIC [4,
5], LEA [6], and IBFV [7], to name a few. However, obtaining
visually pleasing images requires an intrinsically huge computational
expense for pixel / texel based synthesis, which makes it difficult for
texture-based techniques to meet the increasing resolution of real-
world applications. Streamlines remain one of the most
straightforward and fastest visualization techniques used to
investigate flow phenomena. One major problem is that either a local
discrete coarse view or a cluttered image of the flow is obtained
unless an appropriate seeding strategy is employed. The key goal of
flow visualization is to provide insight into flow structures while an
aesthetic image filled with evenly-spaced streamlines helps the user
quickly recognize flow patterns without visual distractions that
would arise from arbitrarily-advected lines. Furthermore, a layout
with longer streamlines is a more effective representation than one
with shorter streamlets since discontinuities in the latter impair the
impression of a flow field. Due to flow divergence and convergence,
there is a tradeoff between placement of evenly-spaced streamlines
and advection of long streamlines, with grid-point based arrow plots
or short streamlets at one extreme and un-controlled streamlines at
the other extreme. Thus there is no single global solution to the
placement of strictly evenly-spaced streamlines for a flow with
divergence or convergence. One important objective is to strike a
balance between the two factors to provide an optimal distribution of
evenly-spaced streamlines.

In this paper we present a novel streamline placement algorithm.
A fourth-order Runge-Kutta integrator allows rapid, but accurate,
flow line advection. Cubic Hermite polynomial interpolation allows
fewer evenly-spaced samples along each streamline. Double queues
are used to prioritize topological seeding and to favor long
streamlines to minimize discontinuities. Adaptive distance control
driven by the local flow variance is exploited to reduce cavities. In
addition, we present a fast robust loop detection strategy to address
closed and spiraling streamlines for complex flow fields. Interactive

placement of high-density streamlines can be achieved for large flow
fields on an ordinary PC.

The remainder of this paper is organized as follows. Section 2
gives an introduction to existing algorithms. Section 3 presents our
advanced evenly-spaced streamline placement algorithm. Results are
given in section 4 to demonstrate the placement speed, quality, and
robustness of our algorithm. We conclude the paper with a brief
summary and outlook on future work.

2 PREVIOUS WORK
Turk and Banks [10] presented an image-guided algorithm that
iteratively refines an initial placement by creating, merging,
repositioning, lengthening, or shortening streamlines to minimize an
energy function. The energy function describes the difference
between the current placement and a desired one. This algorithm
generates high-quality placements but the huge computational cost
restricts its practical applicability. Later Mao et al. [11] extended it
for streamline placement on curved surfaces.

Other algorithms use inter-sample distance control to
approximate inter-line distance control in streamline advection. They
mainly differ in the greedy seeding strategy that drives the placement
process until a queue of candidate seeds is empty. Jobard and Lefer
[8] proposed to incorporate an FIFO neighborhood seeding strategy
with a cell-based distance controller for evenly-spaced streamline
placement (Fig. 1). Their algorithm can create a variety of streamline
placements, ranging from dense texture-like to sparse hand-drawing
styles, by simply adjusting the separating distance between adjacent
streamlines. The distance controller checks each streamline sample
(including seeds) using a Cartesian grid, which, with the cell size
equal to the separating distance, is superimposed on the flow field. A
pointer is added to the sample-pointer list of the containing cell if the
sample is greater than the threshold distance to the samples already
accepted in the nine local cells. As samples are successively
generated and evenly spaced along each streamline through a fixed
step size integrator, each of them is checked by the distance
controller and any sample-refusal terminates streamline advection.
Each streamline, once advected long enough to survive, is saved and
introduces two neighboring candidate seeds in the local orthogonal
flow direction to a global queue, from which a candidate is extracted
to begin a new advection unless rejected by the controller. This
neighborhood seeding strategy produces artifacts in the placement.
Noticeable discontinuities tend to occur in turbulent and even
laminar areas due to the rigid seeding scheme and the FIFO

• Zhanping Liu, Robert J. Moorhead II, and Joe Groner are with HPC2 / GRI

/ Visualization Analysis and Imaging Lab, PO Box 9627, Mississippi State
University, MS 39762-9627. E-Mail: zhanping, rjm, bjg@hpc.msstate.edu.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

965

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

scheduler. Large cavities may remain in the placement, particularly
around critical points, due to the consecutive terminations of
sequentially advected streamlines. This algorithm was later adapted
for unsteady flow fields [12], extended to multi-resolution placement
[13], and combined with streamline illumination for 3D flows [14].

Fig. 1. The pipeline of a typical streamline placement algorithm based
on inter-sample distance control. An FIFO neighborhood seeding
strategy is incorporated with a cell-based distance controller.

Verma et al. [15] presented a flow-guided seeding strategy by
which topological templates are designed to choose seeds around
critical points before Poisson-disk distribution is used to place
additional seeds elsewhere. Topological features of the flow can be
retained in a placement even when the global density is low.
However, the global uniformity is degraded and the density disparity
gets exacerbated as the separating distance increases. This work was
later extended to 3D streamline placement [16]. Recently Mebarki et
al. [9] proposed a farthest point seeding strategy that chooses the
circumcircle center of the largest triangle as the new seed point from
a priority queue of unvisited Delaunay triangles. For each advected
streamline, the unvisited incident triangles with circumcircle
diameters larger than the separating distance are pushed to the
priority queue and sorted by the diameter. This algorithm and [8, 15]
are all based on inter-sample distance control and the major
difference lies in the greedy seeding strategy. These algorithms run
at approximately the same speed, with a minor variation caused by
the specific seeding strategy, implementation, and measurement
platform. They all adopt a fixed step size integrator to create evenly-
spaced samples for distance control. As a consequence, they cannot
achieve interactive placement of high density due to the large cost of
both streamline advection and distance checking on a significant
number of samples, nor can they robustly detect looping streamlines
due to insufficient numerical accuracy. They are restricted to small-
size, non-turbulent flow fields (e.g., very small-size synthetic data)
for which numerical inaccuracy and the large computational cost are

made less noticeable. They are not well suited for visualizing large,
complex, real-world flow fields.

3 ADVANCED EVENLY-SPACED STREAMLINE PLACEMENT
In this section, we present an Advanced Evenly-Spaced Streamline
(ADVESS) placement algorithm for fast, high-quality, and robust
layout of flow lines. First we accelerate placement generation
through rapid streamline advection and significant reduction of the
cost of cell-based inter-sample distance control. The former is
achieved by using a fourth-order Runge-Kutta integrator with
adaptive step size and error control, or RK4-ASSEC for short. The
latter is accomplished by using cubic Hermite polynomial
interpolation with large sample-spacing to create fewer evenly-
spaced samples along each streamline. We also enhance placement
quality via double queues and adaptive distance control. Double-
queuing prioritizes seeds around critical points and seeds introduced
by long streamlines to combat discontinuities. Adaptive distance
control based on the local flow variance places streamlines where
cavities would otherwise remain. Finally, we present a universal,
effective, fast, and robust loop detection strategy.

3.1 Accelerating Placement Generation
The inter-sample distance control scheme mandates that the interval
between any two successive samples of a streamline be smaller than
the specified separating distance to make this proxy distance control
acceptable. Any fixed step size integrator is a tradeoff between
computational speed and numerical accuracy. We thus adopt an
RK4-ASSEC integrator and cubic Hermite polynomial interpolation
with large sample-spacing to accelerate placement generation while
maintaining high numerical accuracy. Other schemes [20] may be
considered to achieve the same goal.

3.1.1 Accelerating Streamline Integration
A streamline is a curve everywhere tangent to the flow, i.e.,

dρ(τ) / dτ = υ(ρ(τ))

where ρ(τ) is a point along the streamline and υ(ρ(τ)) is the flow
vector at that point. Given a seed with τ = 0, the streamline is
obtained by solving the above differential equation step by step:

)dτ) ρ(τ υ(ρ(τ)∆τ)ρ(τ
∆τ τ

 τ∫
+

+=+

When vectors obtained through interpolation are always
normalized, as is the case with our ADVESS algorithm, the
integration variable τ is equal to and hence can be used as the curve
length. The steps of RK4, a well-known numerical integrator, are:

∆ρ0 = s × υ(ρ(τ))
∆ρ1 = s × υ(ρ(τ) + ∆ρ0 / 2)

∆ρ2 = s × υ(ρ(τ) + ∆ρ1 / 2)

∆ρ3 = s × υ(ρ(τ) + ∆ρ2)

ρ(τ + s) = ρ(τ) + ∆ρ0 / 6 + ∆ρ1 / 3 + ∆ρ2 / 3 + ∆ρ3 / 6

where s = ∆τ is the integration step size.
Adaptive step size based on local error control [3] can be added

to the RK4 integrator to perform fast, but accurate, integration. An
efficient error estimator based on embedded RK formulae is:

ε = ∆ρ3 / 6 – υ(ρ(τ + s)) × s / 6

Given an error tolerance range (εmin, εmax), the step size is
doubled when ε < εmin and halved when ε > εmax. An RK4-ASSEC
integrator as described above can be very fast and highly accurate.

3.1.2 Evenly Sampling Streamlines
Due to adaptive step size, the distance between two successive points
obtained through RK4-ASSEC, ρ(τn) and ρ(τn+1), is not fixed. To

incoming sample to controller

locate the containing cell and
the eight nearest neighbor cells

any sample registered in
the cells is at a distance
smaller than the threshold
to the incoming sample?

pop head to
get a seed

advect to get
next sample

register samples

save sample
to line buffer

outside field?
critical point?

N

delete samples in the line buffer

sample is a seed?

number of samples in the line buffer > M?

queue empty?

N

streamline placement ends

a non-priority queue of candidate seeds

push to tail two orthogonal
neighbors of each sample

BEGIN: push a
seed to the queue

N
Y

Y
Y

N

Y
Y

Y

N

inter-sample distance controller

seeding strategy

966

LIU ET AL.: AN ADVANCED EVENLY-SPACED STREAMLINE PLACEMENT ALGORITHM

create evenly-spaced samples for distance control, we use cubic
Hermite polynomial interpolation to sample each streamline:

Φ(µ) = Aµ3 + Bµ2 + Cµ + D; µ = (τs – τn) / (τn+1 – τn) ∈ [0, 1]
where τn and τn+1 are the curve lengths (as discussed in section 3.1.1)
for points ρ(τn) and ρ(τn+1), respectively. τs ∈ [τn, τn+1] is the curve
length for an evenly-interpolated sample and:

A = 2Φ(0) – 2Φ(1) + Φ′(0) + Φ′(1); C = Φ′(0)
B = –3Φ(0) + 3Φ(1) – 2Φ′(0) – Φ′(1); D = Φ (0)

with boundary conditions:
Φ(0) = ρ(τn); Φ′(0) = (τn+1 – τn)υ(ρ(τn))
Φ(1) = ρ(τn+1); Φ′(1) = (τn+1 – τn)υ(ρ(τn+1))
τs is initialized to a given sampling size ζ and is incremented by ζ

following each sample interpolation that occurs when τs falls within
[τn, τn+1]. The interval of two successive points, i.e., the step size τn+1
– τn, may be tens of times the field cell size and hence there may be
many evenly-spaced samples in the range, which can be quickly
generated using forward difference equations:

Φ1(µ) = Φ(µ + µδ) – Φ(µ) = 3Aµδµ
2 + (3Aµδ

2 + 2Bµδ)µ
 + Aµδ

3 + Bµδ
2 + Cµδ

Φ2(µ) = Φ1(µ + µδ) – Φ1(µ) = 6Aµδ
2µ + 6Aµδ

3 + 2 Bµδ
2

Φ3(µ) = Φ2(µ + µδ) – Φ2(µ) = 6Aµδ
3 = constant

where µδ = ζ / (τn+1 – τn). Once Φ1(µ), Φ2(µ), and Φ3(µ) are
computed for the first evenly-spaced sample within an interpolation
interval, the subsequent samples within the same interval can be
recursively obtained using three additions per sample:

Φ(µk+1) = Φ(µk) + Φ1(µk)
Φ1(µk+1) = Φ1(µk) + Φ2(µk)
Φ2(µk+1) = Φ2(µk) + Φ3(µk)

where Φ(µk) and Φ(µk+1) are evenly-interpolated samples k and k+1
within the same interval, respectively.

3.1.3 Generating Fewer Samples
Two distance parameters are usually used for inter-sample distance
control to favor long streamlines. dsep is the separating distance given
by the user, which specifies the minimum distance between seeds
and streamlines. dtest, a percentage of dsep, serves as the minimum
distance between regular (non-seed) samples and streamlines. dtest =
0.5dsep usually gives good visual results, but this depends on the
characteristics of the flow being visualized. A single distance
parameter would create a distracting placement with lots of short
streamlets due to the early termination of advection by excessively
stringent distance control on regular samples. The consequence of
using two distance parameters is a disparity in streamline density. As
mentioned in section 1, there is a tradeoff between placement
uniformity and long streamline generation (or placement continuity)
that cannot be entirely solved. This involves Proximity Tolerance
Degree (PTD), a metric used in our analysis of density disparity to
describe the extent to which the actual inter-line distance may be
smaller than the specified separating distance. When dtest = 0.5dsep,
the PTD is larger than dsep / dtest = 2. The PTD is usually larger than 1
and even much larger to maintain the placement continuity. The PTD
results from an implicit influence by the approximation of inter-
sample distance control to inter-line distance control, in combination
with an explicit influence by the percentage of dtest to dsep.

Our ADVESS algorithm uses cubic Hermite polynomial
interpolation to generate evenly-spaced samples along each
streamline. We choose the sampling size equal to dtest, which greatly
reduces the cost of distance checking due to fewer samples
generated, particularly when the separating distance increases. Such
a large sampling size used in ADVESS (Fig. 2a) tends to result in a
larger PTD than does a smaller fixed step size used in other
algorithms (Fig. 2b) because the former provides less accurate

distance control than the latter. Roughly speaking, the PTD caused
by the former is λ (1 < λ < 1.155 = 1 / cos60°) times the one by the
latter and the worst case occurs when SA1 = SB1 = A1B1 = dtest. In
order to maintain acceptable global uniformity, a larger dtest can be
used in ADVESS to suppress the PTD.

Fig. 2. Given a sample S and the distances to two samples (A1, B1 in
Figure a and A2, B2 in Figure b) of a streamline, i.e., L1 and L2 (L1 >=
dtest, L2 >= dtest), a longer inter-sample interval (Figure a, the case for
ADVESS) introduces a larger distance control error (ε1 > ε2) than does
a shorter inter-sample interval (Figure b, the case for other algorithms
using a fixed step size integrator).

Since ADVESS employs a large sampling stride, there may be a
large curvature between two successive evenly-spaced samples as
opposed to a straight line segment shown in Fig. 2a. To address this
scenario for acceptable distance control, distance checking is
performed not only on evenly-spaced samples obtained through
cubic Hermite polynomial interpolation, but also on raw points
generated by the RK4-ASSEC integrator. Once a streamline is
advected and survives the length check, all these points are registered
in the distance controller while only raw points are rendered to show
the placement. Even with raw points considered, many fewer
samples are created in ADVESS than in other algorithms and the
computational cost of distance checking is considerably reduced.

3.2 Enhancing Placement Quality
Since the adaptive step size may be large when streamlines cross the
field boundaries, streamlines must be clipped against the boundaries.
Otherwise the placement would be cluttered by simply truncated
streamlines and accordingly encroaching streamlets (upper left in
Fig. 3). Evenly-spaced sampling, distance checking, and controller
registration must be performed on the extended part of each clipped
streamline. Otherwise the encroaching streamlets would remain due
to being accepted by the un-updated controller (upper right in Fig. 3).
As boundary artifacts are eliminated via streamline clipping coupled
with normal distance control, there are still discontinuities and
cavities (lower left in Fig. 3) in the placement. To enhance placement
quality, we present double-queuing and adaptive distance control to
minimize discontinuities and cavities, respectively.

3.2.1 Double-Queuing Seeds
The random selection of initial seeds and the FIFO seed scheduler
adopted in Jobard and Lefer’s algorithm [8] neglect the importance
of flow topology and the desire for long streamlines. Verma et al.’s
seeding strategy [15] emphasizes topological structures but sacrifices
the global uniformity. Mebarki et al.’s seeding strategy [9] based on
Delaunay triangulation is too computationally expensive to handle a
huge number of samples when a small fixed step size is used for
high-density streamline placement.

We propose an improved seeding strategy that prioritizes
topological seeding and favors long streamlines. A lightweight
topological analysis is conducted to provide a guide to select initial
seeds based on topological templates [15]. To spread this schematic

S
S

(a) (b)

 longer line segment shorter line segment

L1

A1

L1 L2

B1

L2

B2 A2

dtest

ε1 ε2

967

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

seeding pattern as much as possible, we assign a higher priority to
streamline seeds than regular (non-seed) samples in introducing
neighboring candidates. Specifically, we employ two queues, a
primary queue and a secondary queue. The primary queue serves as
the major seed provider where initial topological seeds are assigned a
highest weight. Candidates introduced by streamline seeds are also
stored in the primary queue, but are sorted by the weight, i.e., the
streamline length. The secondary queue stores candidates introduced
by regular samples in an FIFO manner and it is used only when the
primary queue is temporarily empty. Our ADVESS algorithm runs
until the secondary queue is empty. The pseudo code for double-
queuing seeds is given in Fig. 4.

Double-queuing enhances placement quality by reducing
discontinuities and favoring long streamlines. The placement
generated using double queues (lower right in Fig. 3) is better in
quality than the one generated using a simplistic neighborhood
seeding strategy (lower left in Fig. 3). Double-queuing adds a
marginal cost to ADVESS since a lightweight topological analysis is
conducted and sorting is performed only in the primary queue on a
small number of candidates introduced by streamline seeds.

Fig. 3. Placements of 1% density generated for a 300 × 300 flow field.
Streamlines are simply truncated outward and accordingly streamlets
(in red) encroach inward near the boundaries when streamlines are
not clipped against the boundaries (upper left). When streamlines are
clipped without distance control and controller registration, the
encroaching streamlets (in red) remain due to being accepted by the
un-updated controller (upper right). When streamlines are clipped with
normal distance control, boundary artifacts are eliminated. There are
still a lot of discontinuities and cavities in the placement generated
using a simplistic neighborhood seeding strategy (lower left).
Discontinuities are significantly reduced and streamlines get longer in
the placement generated using double queues, though there are still
some cavities, particularly near critical points (lower right).

3.2.2 Adaptive Distance Control
Double-queuing alleviates the cavity problem, though there are still
cavities that cannot be eliminated (lower right in Fig. 3). Thus we
propose to use adaptive distance control to attack this problem. This
idea was inspired by the use of two distance parameters, i.e., dsep and
dtest, in many streamline placement algorithms based on inter-sample
distance control. The second parameter relaxes distance control,
helping streamlines pass where cavities might otherwise remain.
Fixing the value of dtest throughout the streamline placement process

fails to consider the flow behavior. As a result, inter-sample distance
control is still excessively stringent in some turbulent areas while it
is unnecessarily loose in some laminar areas. The disparity of the
placement density is largely caused by such a stiff distance control
scheme.

Fig. 4. Pseudo code for double-queuing seeds.

Our ADVESS algorithm employs adaptive distance control based
on the local flow variance. The local variance of a two-dimensional
flow can be measured by a scalar value:

conDiv = ∂(νx) / ∂x + ∂(νy) / ∂y
where νx and νy are vector components. The value is positive when
the flow diverges and negative when the flow converges. Since
streamlines are advected in both directions, the magnitude of the
local flow variance, conDiv, may be used to govern adaptive
distance control. It is computed at each grid point and mapped,
usually non-linearly, to [0, 1] before it is used to determine an
adaptive map. The adaptive map stores scaling parameters, which are
used to modulate the separating distance:

adaptiveMap[i] = minScale + (1 – minScale)(1 – varianceMag[i])
where minScale is a minimum scaling value specified by the user.
The adaptive map value ([minScale, 1]) is larger for laminar areas
and smaller for turbulent areas. During the placement process, the
adaptive map is accessed to adjust distance control.

Care should be taken not to make minScale so small that it affects
the global uniformity. Currently we use the adaptive map to
modulate both dsep and dtest. For the 300 × 300 flow field used in Fig.
3, we set minScale to 0.75 with good results. The placement
generated using adaptive distance control is shown in Fig. 8 (bottom
middle). Cavities are effectively eliminated and placement quality is
considerably improved with acceptable global uniformity at a
negligible additional cost.

3.3 Detecting Streamline Loops
Without effective loop detection, a placement might be cluttered by
closed or spiraling (not closed) streamlines (upper in Fig. 5).
Algorithms based on inter-sample distance control are susceptible to
this problem if each sample is checked against only the samples of
other streamlines. To perform loop detection, the sample cannot be
simply checked against other samples of the current streamline.
Otherwise the advection would be immediately terminated even
when there is no loop because the distance between any two
successive samples is not greater than the separating distance.

Although there are general algorithms [17, 18] for very accurate
detection of closed streamlines, they are too computationally
expensive to be adapted for interactive streamline placement.
Mebarki et al. [9] proposed to insert all samples in a Delaunay
triangulation by which the minimum circumcircle diameter of the

void PopToAdvect(QUEUE* q)
{ Pop a seed s from q head for streamline advection;

if(s is accepted && (l = streamline length) > L)
{ s introduces two neighboring candidates c1 and c2 with weight l;
 Send c1 and c2 to primary queue and sort them by weight;
 for(each regular non-seed sample of the streamline)
 Push two neighboring candidates to secondary queue tail;
}

}
void DoubleQueuingSeeds()
{ Extract critical points and use seeding templates to set initial seeds;

Add initial seeds to primary queue with a maximum weight MAX;
do
{ while(primary queue not empty) PopToAdvect(primary queue);
 if(secondary queue not empty) PopToAdvect(secondary queue);

 } while(secondary queue not empty);
}

968

LIU ET AL.: AN ADVANCED EVENLY-SPACED STREAMLINE PLACEMENT ALGORITHM

triangles caused by the new sample is used to approximate both
inter-streamline distance and streamlineself distance (for loop
detection). This strategy mandates that the step size be significantly
smaller than the separating distance for acceptable approximation,
which causes a huge computational cost. Given an unknown flow
field, this method is also prone to missing loops when the size is not
sufficiently small. A demo program [19] of Mebarki et al.’s
algorithm fails to handle the flow field used in Fig. 5.

Fig. 5. A placement generated without loop detection is cluttered by
streamline loops (upper). Closed and spiraling streamlines can be
robustly detected and effectively processed using our ADVESS
(lower). Flow field size: 525 × 241; separating distance: 4.5 in cell size.

We propose a fast effective loop detection strategy, which is
robust due to high accuracy guaranteed through an RK4-ASSEC
integrator. A streamline is ill-looping when the distance between two
successive cycles is smaller than the threshold distance dtest. A closed
streamline is always ill-looping as a whole. However, a spiraling
streamline may be ill-looping only in part of the curve. Our principle
is to strictly disallow the ill-looping part of a streamline, if any, to
advect more than one cycle due to the cluttering it would cause
otherwise. Within this one-cycle limit, the ill-looping part is allowed
to advect as long as possible to encourage the formation of closed
loops, without cluttering the placement. It is worth mentioning that
regardless of the metrics used, effective loop detection cannot be
achieved by simply checking the current sample against the seed
since the ill-looping part of a spiraling streamline does not
necessarily begin with the seed. To address this problem, a brute-
force but universal solution is to check each existing sample against
the current sample with respect to the distance and the ill-looping
angle. The ill-looping angle of each existing sample relative to the
current sample is not obtained through segment-wise angle
accumulation due to the large computational cost. Instead it is
indirectly measured by a dot-product () between two normalized
vectors. In fact, the major task of loop detection is to distinguish
between an opponent sample pn (Fig. 6) and a proponent sample pm
when both are less than dtest to the current sample p0 and the two
associated flow vectors, vn and vm, are both aligned, within a small
threshold angle α, with the latest uni-directional (i.e., always in the
positive flow direction) line segment vector v1. pn, as a “long-term α-
neighbor” of p0, approaches the one-cycle limit while pm, as a “short-
term α-neighbor” of p0, does not. The two vectors, pointing to p0 and
the previous sample p1, respectively, from any opponent or
proponent sample, are used to compute two dot-products with v1. pn
is then distinguishable from pm by at least one negative dot-product

for positive advection. This holds for negative advection if the two
dot-products are negated. There may be several proponent samples
found through a loop detection process (one process for each newly
generated sample). However, any opponent sample terminates such a
process as the ill-looping part has been advected enough (ill-looping
angle >= 2π-α) to classify the loop by testing whether the vector
pointing from p0 to pn is aligned, within a small threshold angle β,
with the actual integration vector at p0. Satisfactory results can be
obtained by using α = 20° and β = 10° in our test. Despite this loop
classification scheme being less accurate than [17, 18], our loop
detection strategy is robust enough to avoid any cluttering. Fig. 6
shows the two possible cases for outward negative advection.

Fig. 6. Given the current sample p0 and the previous sample p1 of an
outward-negatively advected streamline, the major task of loop
detection is to distinguish between an opponent sample pn (|p0pn| <
dtest and αn <= α; any such sample terminates the loop detection
process) and a proponent sample pm (|p0pm| < dtest and αm <= α; there
may be several samples of this kind found through a loop detection
process). pn is distinguishable from pm since at least one of the two
negated (due to the negative advection) dot-products is negative (–
(un0 v1) < 0, –(un1 v1) < 0 on the left and –(un0 v1) > 0, –(un1
v1) < 0 on the right) for pn while both are non-negative (–(um0 v1) >
0, –(um1 v1) > 0) for pm. Samples along the black part of the
streamline are not “α-neighbors” of p0 and hence are skipped.
Segment p0p1 and α are exaggerated here for illustrative purposes.

We use a loop controller, with a data structure similar to that of
the global controller (Fig. 1), to achieve fast loop detection by
limiting distance checking against the current sample to only the
samples in the nine local cells. Furthermore, the signed RK4-ASSEC
step index, determined by the advection direction, is attached to each
raw sample as the stamp. Each evenly-interpolated sample is
attached with a neighboring raw sample’s stamp. Given a threshold
stamp-difference δ, many proponent samples are skipped through
fast stamp checking without distance checking against the current
sample. Each cell of the loop controller maintains the minimum and
maximum stamps of the accepted samples and hence many cells can
be efficiently skipped. A conservative value for δ can be 4 and a
larger one may be used due to high curve-smoothness guaranteed by
adaptive step size. The current sample is first checked by the loop
controller and, unless an ill-looping cycle is found, sent to the global
controller for inter-streamline distance checking. Otherwise, the
advection is terminated to either form a closed loop or refuse further
spiraling. The loop controller is cleared upon the advection of each
new streamline. Fig. 7 shows the pseudo code for loop detection.

Our loop detection strategy is universal, effective, fast, and
robust. Function pointers are used in our implementation to replace
all if-statements for high-performance execution. It takes 0.253
seconds for ADVESS with loop detection to generate the placement
in Fig. 5 (lower). All loops are detected and processed well.

4 RESULTS AND DISCUSSIONS
We have implemented Jobard and Lefer’s algorithm [8] and our
ADVESS algorithm using Visual C++ on a Windows XP / Dell
Inspiron 2650 notebook (Pentium IV 1.70GHz, 512MB RAM) with
exactly the same code on vector interpolation, distance controller,
and data structures for storing streamlines. Compared to Jobard and

αmv1 p1

p0

pm pn

um1
um0

un0

un1

vm

vn

v0

αn
βn

integration
direction
(negative)

αm v1 p1

p0

pm pn

um1 um0

un0un1

vm

vn

v0

αn

βn

integration
direction
(negative)

v0′ v0′

969

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Lefer’s algorithm that uses a fixed step size RK4 integrator and a
neighborhood seeding strategy, our ADVESS algorithm employs an
RK4-ASSEC integrator coupled with cubic Hermite polynomial
interpolation, streamline clipping, double-queuing, adaptive distance
control, and loop detection. We have not implemented Mebarki et
al.’s algorithm since we have access to the executable program [19].
We have compared the three algorithms on the WinTel platform
mentioned above in placement quality and generation speed using a
300 × 300 flow field. The adaptive step size is initialized to 0.0625
and varies between 0.0005 and 32.0 (in cell size) in our algorithm
while a fixed step size of 0.15 is set in the other two algorithms. Fig.
8 shows comparative streamline placements for three increasing
densities. Placements generated by our algorithm are better than
those by Jobard and Lefer’s algorithm, and are comparable with
those by Mebarki et al.’s algorithm in quality, specifically regarding
uniformity, continuity, and coverage. It is worth mentioning that
placement quality is heavily dependent on loop detection as
demonstrated in Fig. 5, in addition to the above three factors. The
flow field used in Fig. 8 is intended to provide a “clean” comparison
of streamline placements only in the former three factors, without
being cluttered by ill-looping streamlines. Table 1 shows the timings
of the algorithms for generating the placements. Such a high
placement speed of our algorithm comes along with high accuracy,
i.e., 0.0 ~ 0.00001 (in cell size).

Fig. 7. Pseudo code for our loop detection strategy.

Table 1. Timings measured on Pentium IV (1.70GHz, 512MB RAM).

density
(% width)

Jobard-Lefer
algorithm

Mebarki et al.’s
algorithm

our ADVESS
algorithm

1.0% 1.882 s 1.262 s 0.241 s
1.5% 1.382 s 0.811 s 0.140 s
2.0% 1.142 s 0.621 s 0.080 s

Fig. 9 shows the streamline placement (upper) generated using

our algorithm for a 468 × 337 flow field obtained through a US Navy
model of the Northeast Pacific Ocean (180° W ~ 78° W, 20° N ~ 62°
N). The land is shown in brown and Hawaii islands in red. The flow
is highly turbulent with hundreds of critical points. Our algorithm is
robust enough to detect and process all streamline loops. Also shown
in Fig. 9 are the two placements generated using our algorithm
(lower left) and Mebarki et al.’s algorithm (lower right) for a 201 ×
201 flow field that is obtained by zooming a region of interest (184 ~
284, 136 ~ 236, marked by the red square) of the Northeast Pacific

Ocean. There are three spiraling streamlines (marked by blue
rectangles) detected by both algorithms while there are two loops
(marked by red rectangles) missed by Mebarki et al.’s algorithm that
clutter the placement. These two loops can be effectively detected by
our algorithm and processed as a closed streamline and a spiraling
streamline, respectively. For this zoomed flow, our algorithm is more
robust in loop detection and 4.6 times faster in placement generation
than Mebarki et al.’s algorithm.

5 CONCLUSIONS AND FUTURE WORK
We have presented an advanced evenly-spaced streamline placement
algorithm. It exploits a fourth-order Runge-Kutta integrator with
adaptive step size and error control for rapid, but accurate, flow
advection. Cubic Hermite polynomial interpolation with large
sample-spacing is employed to reduce the amount of distance
checking. Double queues are used to prioritize topological seeding
and to favor long streamlines to minimize discontinuities. Adaptive
distance control based on the local flow characteristics is adopted to
reduce cavities. Furthermore, we have presented a universal,
effective, fast, and robust loop detection strategy to address closed
and spiraling streamlines. In particular, our algorithm is an order-of-
magnitude faster than Jobard and Lefer’s algorithm [8] with better
placement quality. Our algorithm is over 5 times faster than Mebarki
et al.’s algorithm [9] with comparable placement quality, but with a
more robust solution to loop detection.

As for future work, we would like to extend our ADVESS
algorithm to view-dependent streamline placement on 2D planar
surfaces, on 3D curved surfaces, and in 3D volumes.

ACKNOWLEDGEMENTS
This work was supported in part by the DoD HPCVI program, NSF
grant EPS-0132618, and the NGI URI program. The authors would
like to thank Abdelkrim Mebarki for his online demo. Thanks also
go to the anonymous reviewers for their valuable comments.

REFERENCES
[1] J. J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualization,”

Proc. ACM SIGGRAPH ’91, pp. 309-318, 1991.
[2] B. Cabral and L. Leedom, “Imaging Vector Fields Using Line Integral

Convolution,” Proc. ACM SIGGRAPH ’93, pp. 263-270, 1993.
[3] D. Stalling and H.-C. Hege, “Fast and Resolution Independent Line

Integral Convolution,” Proc. ACM SIGGRAPH ’95, pp. 249-256, 1995.
[4] H.-W. Shen and D. L. Kao, “A New Line Integral Convolution

Algorithm for Visualizing Time-Varying Flow Fields,” IEEE Trans.
Visualization and Computer Graphics, vol.. 4, no. 2, pp. 98-108, 1998.

[5] Z. Liu and R. J. Moorhead II, “Accelerated Unsteady Flow Line Integral
Convolution,” IEEE Trans. Visualization and Computer Graphics, vol.
11, no. 2, pp. 113-125, 2005.

[6] B. Jobard, G. Erlebacher, and M. Y. Hussaini, “Lagrangian-Eulerian
Advection of Noise and Dye Textures for Unsteady Flow
Visualization,” IEEE Trans. Visualization and Computer Graphics, vol.
8, no. 3, pp. 211-222, 2002.

[7] J. J. van Wijk, “Image Based Flow Visualization,” Proc. ACM
SIGGRAPH ’02, pp. 745-754, 2002.

[8] B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of
Arbitrary Density,” Proc. Eighth Eurographics Workshop on
Visualization in Scientific Computing, pp. 45-55, 1997.

[9] A. Mebarki, P. Alliez, and O. Devillers, “Farthest Point Seeding for
Efficient Placement of Streamlines,” Proc. IEEE Visualization ’05, pp.
479-486, 2005.

[10] G. Turk and D. Banks, “Image-Guided Streamline Placement,” Proc.
ACM SIGGRAPH ’96, pp. 453-460, 1996.

[11] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya, “Image-Guided
Streamline Placement on Curvilinear Grid Surfaces,” Proc. IEEE
Visualization ’98, pp. 135-142, 1998.

[12] B. Jobard and W. Lefer, “Unsteady Flow Visualization by Animating
Evenly-Spaced Streamlines,” Proc. Eurographics ’00, pp. 21-31, 2000.

SAMP { POINT p; VECTOR v; short s; /* s: stamp */ }
CELL { SAMP** sampleList; short s[2]; /* s: min, max stamps */ }

/* p1, p0: previous and current samples; cp: closing point */
/* a: negative(–1) / positive(1) advection; cc: containing cell */
/* : dot-product; : normalize vectors and then dot-product */
int LoopDetection(SAMP* p1, SAMP* p0, POINT* cp, int a)
{ for(each of the nine local cells: CELL cell)
 { if(cell.sampleList is empty) continue;
 if(|cell.s[(a+1)/2] – p0→s| < δ) continue;
 for(each sample in cell: SAMP* q = cell.sampleList[i])
 { if(|q→s – p0→s| < δ) continue;
 if(Distance(q→p, p0→p) >= dtest) continue;
 if(Distance(q→p, p0→p) <= ε) { *cp = q→p; return closed; }
 VECTOR v1 = (p0→p–p1→p)*a; if(q→v v1 < cosα) continue;
 VECTOR u0 = (p0→p – q→p)*a, u1 = (p1→p – q→p) * a;
 if(u0 v1 >= 0 && u1 v1 >= 0) continue;
 if(|u0 p0→v| > cosβ) { *cp = q→p; return closed; }
 return spiraling;
 }
 }
 cc.s[(a+1)/2] = p0→s; add p0 to cc.sampleList; return pass;
 }

970

LIU ET AL.: AN ADVANCED EVENLY-SPACED STREAMLINE PLACEMENT ALGORITHM

[13] B. Jobard and W. Lefer, “Multiresolution Flow Visualization,” Proc.
Ninth International Conf. in Central Europe on Computer Graphics,
Visualization, and Computer Vision (WSCG ’01), pp. 33-37, 2001.

[14] O. Mattausch, T. Theubl, H. Hauser, and E. Groller, “Strategies for
Interactive Exploration of 3D Flow Using Evenly-Spaced Illuminated
Streamlines,” Proc. Nineteenth Spring Conf. on Computer Graphics,
pp. 213-222, 2003.

[15] V. Verma, D. Kao, and A. Pang, “A Flow-Guided Streamlines Seeding
Strategy,” Proc. IEEE Visualization ’00, pp. 163-170, 2000.

[16] X. Ye, D. Kao, and A. Pang, “Strategy for Seeding 3D Streamlines,”
Proc. IEEE Visualization ’05, pp. 471-478, 2005.

[17] T. Wischgoll and G. Scheuermann, “Detection and Visualization of
Closed Streamlines in Planar Flows,” IEEE Trans. Visualization and
Computer Graphics, vol. 7, no. 2, pp. 165-172, 2001.

[18] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Grid-
Independent Detection of Closed Streamlines in 2D Vector Fields,”
Proc. Ninth International Fall Workshop on Vision, Modeling, and
Visualization (VMV’04), pp.421-428, 2004.

[19] A. Mebarki, “Demo Executable” http://www-sop.inria.fr/geometrica/
team/Abdelkrim.Mebarki.

[20] D. Higham, “Highly Continuous Runge-Kutta Interpolants,” ACM
Trans. Mathematical Software, vol. 17, no. 3, pp. 368-386, 1991.

Fig. 8. Streamline placements generated by Jobard and Lefer’s algorithm (left column), our ADVESS algorithm (middle column), and Mebarki et
al.’s algorithm (right column) for three increasing densities (top to bottom, 2.0%, 1.5%, and 1.0%) of a 300 × 300 flow field.

971

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 9. Our ADVESS algorithm is effective in generating the placement (upper, separating distance: 2.0 in cell size) of evenly-spaced streamlines
for a 468 × 337 flow field obtained through a US Navy model of the Northeast Pacific Ocean (180° W ~ 78° W, 20° N ~ 62° N). Also shown are
the two placements (separating distance: 2.4 in cell size) generated by our algorithm (lower left, time used: 0.362 seconds) and Mebarki et al.’s
algorithm (lower right, time used: 1.684 seconds) for a zoomed region (data size: 201 × 201) of the original ocean flow field. Our algorithm is
more robust in loop detection and 4.6 times faster in placement generation than Mebarki et al.’s algorithm.

972

