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Abstract—This paper presents an advanced evenly-spaced streamline placement algorithm for fast, high-quality, and robust 
layout of flow lines. A fourth-order Runge-Kutta integrator with adaptive step size and error control is employed for rapid accurate 
streamline advection. Cubic Hermite polynomial interpolation with large sample-spacing is adopted to create fewer evenly-spaced 
samples along each streamline to reduce the amount of distance checking. We propose two methods to enhance placement 
quality. Double queues are used to prioritize topological seeding and to favor long streamlines to minimize discontinuities. 
Adaptive distance control based on the local flow variance is explored to reduce cavities. Furthermore, we propose a universal, 
effective, fast, and robust loop detection strategy to address closed and spiraling streamlines. Our algorithm is an order-of-
magnitude faster than Jobard and Lefer’s algorithm [8] with better placement quality and over 5 times faster than Mebarki et al.’s 
algorithm [9] with comparable placement quality, but with a more robust solution to loop detection. 
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1 INTRODUCTION 
There has been significant research on texture-based flow 
visualization such as spot noise [1], LIC [2], Fast LIC [3], UFLIC [4, 
5], LEA [6], and IBFV [7], to name a few. However, obtaining 
visually pleasing images requires an intrinsically huge computational 
expense for pixel / texel based synthesis, which makes it difficult for 
texture-based techniques to meet the increasing resolution of real-
world applications. Streamlines remain one of the most 
straightforward and fastest visualization techniques used to 
investigate flow phenomena. One major problem is that either a local 
discrete coarse view or a cluttered image of the flow is obtained 
unless an appropriate seeding strategy is employed. The key goal of 
flow visualization is to provide insight into flow structures while an 
aesthetic image filled with evenly-spaced streamlines helps the user 
quickly recognize flow patterns without visual distractions that 
would arise from arbitrarily-advected lines. Furthermore, a layout 
with longer streamlines is a more effective representation than one 
with shorter streamlets since discontinuities in the latter impair the 
impression of a flow field. Due to flow divergence and convergence, 
there is a tradeoff between placement of evenly-spaced streamlines 
and advection of long streamlines, with grid-point based arrow plots 
or short streamlets at one extreme and un-controlled streamlines at 
the other extreme. Thus there is no single global solution to the 
placement of strictly evenly-spaced streamlines for a flow with 
divergence or convergence. One important objective is to strike a 
balance between the two factors to provide an optimal distribution of 
evenly-spaced streamlines. 

In this paper we present a novel streamline placement algorithm. 
A fourth-order Runge-Kutta integrator allows rapid, but accurate, 
flow line advection. Cubic Hermite polynomial interpolation allows 
fewer evenly-spaced samples along each streamline. Double queues 
are used to prioritize topological seeding and to favor long 
streamlines to minimize discontinuities. Adaptive distance control 
driven by the local flow variance is exploited to reduce cavities. In 
addition, we present a fast robust loop detection strategy to address 
closed and spiraling streamlines for complex flow fields. Interactive 

placement of high-density streamlines can be achieved for large flow 
fields on an ordinary PC. 

The remainder of this paper is organized as follows. Section 2 
gives an introduction to existing algorithms. Section 3 presents our 
advanced evenly-spaced streamline placement algorithm. Results are 
given in section 4 to demonstrate the placement speed, quality, and 
robustness of our algorithm. We conclude the paper with a brief 
summary and outlook on future work. 

2 PREVIOUS WORK 
Turk and Banks [10] presented an image-guided algorithm that 
iteratively refines an initial placement by creating, merging, 
repositioning, lengthening, or shortening streamlines to minimize an 
energy function. The energy function describes the difference 
between the current placement and a desired one. This algorithm 
generates high-quality placements but the huge computational cost 
restricts its practical applicability. Later Mao et al. [11] extended it 
for streamline placement on curved surfaces. 

Other algorithms use inter-sample distance control to 
approximate inter-line distance control in streamline advection. They 
mainly differ in the greedy seeding strategy that drives the placement 
process until a queue of candidate seeds is empty. Jobard and Lefer 
[8] proposed to incorporate an FIFO neighborhood seeding strategy 
with a cell-based distance controller for evenly-spaced streamline 
placement (Fig. 1). Their algorithm can create a variety of streamline 
placements, ranging from dense texture-like to sparse hand-drawing 
styles, by simply adjusting the separating distance between adjacent 
streamlines. The distance controller checks each streamline sample 
(including seeds) using a Cartesian grid, which, with the cell size 
equal to the separating distance, is superimposed on the flow field. A 
pointer is added to the sample-pointer list of the containing cell if the 
sample is greater than the threshold distance to the samples already 
accepted in the nine local cells. As samples are successively 
generated and evenly spaced along each streamline through a fixed 
step size integrator, each of them is checked by the distance 
controller and any sample-refusal terminates streamline advection. 
Each streamline, once advected long enough to survive, is saved and 
introduces two neighboring candidate seeds in the local orthogonal 
flow direction to a global queue, from which a candidate is extracted 
to begin a new advection unless rejected by the controller. This 
neighborhood seeding strategy produces artifacts in the placement. 
Noticeable discontinuities tend to occur in turbulent and even 
laminar areas due to the rigid seeding scheme and the FIFO 
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scheduler. Large cavities may remain in the placement, particularly 
around critical points, due to the consecutive terminations of 
sequentially advected streamlines. This algorithm was later adapted 
for unsteady flow fields [12], extended to multi-resolution placement 
[13], and combined with streamline illumination for 3D flows [14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The pipeline of a typical streamline placement algorithm based 
on inter-sample distance control. An FIFO neighborhood seeding 
strategy is incorporated with a cell-based distance controller. 

Verma et al. [15] presented a flow-guided seeding strategy by 
which topological templates are designed to choose seeds around 
critical points before Poisson-disk distribution is used to place 
additional seeds elsewhere. Topological features of the flow can be 
retained in a placement even when the global density is low. 
However, the global uniformity is degraded and the density disparity 
gets exacerbated as the separating distance increases. This work was 
later extended to 3D streamline placement [16]. Recently Mebarki et 
al. [9] proposed a farthest point seeding strategy that chooses the 
circumcircle center of the largest triangle as the new seed point from 
a priority queue of unvisited Delaunay triangles. For each advected 
streamline, the unvisited incident triangles with circumcircle 
diameters larger than the separating distance are pushed to the 
priority queue and sorted by the diameter. This algorithm and [8, 15] 
are all based on inter-sample distance control and the major 
difference lies in the greedy seeding strategy. These algorithms run 
at approximately the same speed, with a minor variation caused by 
the specific seeding strategy, implementation, and measurement 
platform. They all adopt a fixed step size integrator to create evenly-
spaced samples for distance control. As a consequence, they cannot 
achieve interactive placement of high density due to the large cost of 
both streamline advection and distance checking on a significant 
number of samples, nor can they robustly detect looping streamlines 
due to insufficient numerical accuracy. They are restricted to small-
size, non-turbulent flow fields (e.g., very small-size synthetic data) 
for which numerical inaccuracy and the large computational cost are 

made less noticeable. They are not well suited for visualizing large, 
complex, real-world flow fields. 

3 ADVANCED EVENLY-SPACED STREAMLINE PLACEMENT 
In this section, we present an Advanced Evenly-Spaced Streamline 
(ADVESS) placement algorithm for fast, high-quality, and robust 
layout of flow lines. First we accelerate placement generation 
through rapid streamline advection and significant reduction of the 
cost of cell-based inter-sample distance control. The former is 
achieved by using a fourth-order Runge-Kutta integrator with 
adaptive step size and error control, or RK4-ASSEC for short. The 
latter is accomplished by using cubic Hermite polynomial 
interpolation with large sample-spacing to create fewer evenly-
spaced samples along each streamline. We also enhance placement 
quality via double queues and adaptive distance control. Double-
queuing prioritizes seeds around critical points and seeds introduced 
by long streamlines to combat discontinuities. Adaptive distance 
control based on the local flow variance places streamlines where 
cavities would otherwise remain. Finally, we present a universal, 
effective, fast, and robust loop detection strategy. 

3.1 Accelerating Placement Generation 
The inter-sample distance control scheme mandates that the interval 
between any two successive samples of a streamline be smaller than 
the specified separating distance to make this proxy distance control 
acceptable. Any fixed step size integrator is a tradeoff between 
computational speed and numerical accuracy. We thus adopt an 
RK4-ASSEC integrator and cubic Hermite polynomial interpolation 
with large sample-spacing to accelerate placement generation while 
maintaining high numerical accuracy. Other schemes [20] may be 
considered to achieve the same goal. 

3.1.1 Accelerating Streamline Integration 
A streamline is a curve everywhere tangent to the flow, i.e.,  

dρ(τ) / dτ = υ(ρ(τ))   

where ρ(τ) is a point along the streamline and υ(ρ(τ)) is the flow 
vector at that point. Given a seed with τ = 0, the streamline is 
obtained by solving the above differential equation step by step: 

)dτ ) ρ(τ υ(ρ(τ)∆τ)ρ(τ
∆τ τ

 τ∫
+

+=+  

When vectors obtained through interpolation are always 
normalized, as is the case with our ADVESS algorithm, the 
integration variable τ is equal to and hence can be used as the curve 
length. The steps of RK4, a well-known numerical integrator, are: 

∆ρ0 = s × υ(ρ(τ))   
∆ρ1 = s × υ(ρ(τ) + ∆ρ0 / 2)     

∆ρ2 = s × υ(ρ(τ) + ∆ρ1 / 2)   

∆ρ3 = s × υ(ρ(τ) + ∆ρ2)   

ρ(τ + s) = ρ(τ) + ∆ρ0 / 6 + ∆ρ1 / 3 + ∆ρ2 / 3 + ∆ρ3 / 6   

where s = ∆τ is the integration step size. 
Adaptive step size based on local error control [3] can be added 

to the RK4 integrator to perform fast, but accurate, integration. An 
efficient error estimator based on embedded RK formulae is: 

ε = ∆ρ3 / 6 – υ(ρ(τ + s)) × s / 6 

Given an error tolerance range (εmin, εmax), the step size is 
doubled when ε < εmin and halved when ε > εmax. An RK4-ASSEC 
integrator as described above can be very fast and highly accurate. 

3.1.2 Evenly Sampling Streamlines 
Due to adaptive step size, the distance between two successive points 
obtained through RK4-ASSEC, ρ(τn) and ρ(τn+1), is not fixed. To 
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create evenly-spaced samples for distance control, we use cubic 
Hermite polynomial interpolation to sample each streamline: 

Φ(µ) = Aµ3 + Bµ2 + Cµ + D;    µ = (τs – τn) / (τn+1 – τn) ∈ [0, 1] 
where τn and τn+1 are the curve lengths (as discussed in section 3.1.1) 
for points ρ(τn) and ρ(τn+1), respectively. τs ∈ [τn, τn+1] is the curve 
length for an evenly-interpolated sample and: 

A  =   2Φ(0) – 2Φ(1) +  Φ′(0) + Φ′(1); C  = Φ′(0) 
B  = –3Φ(0) + 3Φ(1) – 2Φ′(0) – Φ′(1); D  = Φ (0) 

with boundary conditions: 
Φ(0) = ρ(τn);  Φ′(0) = (τn+1 – τn)υ(ρ(τn)) 
Φ(1) = ρ(τn+1);  Φ′(1) = (τn+1 – τn)υ(ρ(τn+1)) 
τs is initialized to a given sampling size ζ and is incremented by ζ 

following each sample interpolation that occurs when τs falls within 
[τn, τn+1]. The interval of two successive points, i.e., the step size τn+1 
– τn, may be tens of times the field cell size and hence there may be 
many evenly-spaced samples in the range, which can be quickly 
generated using forward difference equations: 

Φ1(µ) = Φ(µ + µδ)  – Φ(µ)  = 3Aµδµ
2 + (3Aµδ

2 + 2Bµδ)µ  
                                               + Aµδ

3  + Bµδ
2 + Cµδ 

Φ2(µ) = Φ1(µ + µδ) – Φ1(µ) = 6Aµδ
2µ + 6Aµδ

3 + 2 Bµδ
2 

Φ3(µ) = Φ2(µ + µδ) – Φ2(µ) = 6Aµδ
3 = constant 

where µδ = ζ / (τn+1 – τn). Once Φ1(µ), Φ2(µ), and Φ3(µ) are 
computed for the first evenly-spaced sample within an interpolation 
interval, the subsequent samples within the same interval can be 
recursively obtained using three additions per sample: 

Φ(µk+1)  = Φ(µk)  + Φ1(µk) 
Φ1(µk+1) = Φ1(µk) + Φ2(µk) 
Φ2(µk+1) = Φ2(µk) + Φ3(µk) 

where Φ(µk) and Φ(µk+1) are evenly-interpolated samples k and k+1 
within the same interval, respectively. 

3.1.3 Generating Fewer Samples 
Two distance parameters are usually used for inter-sample distance 
control to favor long streamlines. dsep is the separating distance given 
by the user, which specifies the minimum distance between seeds 
and streamlines. dtest, a percentage of dsep, serves as the minimum 
distance between regular (non-seed) samples and streamlines. dtest = 
0.5dsep usually gives good visual results, but this depends on the 
characteristics of the flow being visualized. A single distance 
parameter would create a distracting placement with lots of short 
streamlets due to the early termination of advection by excessively 
stringent distance control on regular samples. The consequence of 
using two distance parameters is a disparity in streamline density. As 
mentioned in section 1, there is a tradeoff between placement 
uniformity and long streamline generation (or placement continuity) 
that cannot be entirely solved. This involves Proximity Tolerance 
Degree (PTD), a metric used in our analysis of density disparity to 
describe the extent to which the actual inter-line distance may be 
smaller than the specified separating distance. When dtest = 0.5dsep, 
the PTD is larger than dsep / dtest = 2. The PTD is usually larger than 1 
and even much larger to maintain the placement continuity. The PTD 
results from an implicit influence by the approximation of inter-
sample distance control to inter-line distance control, in combination 
with an explicit influence by the percentage of dtest to dsep. 

Our ADVESS algorithm uses cubic Hermite polynomial 
interpolation to generate evenly-spaced samples along each 
streamline. We choose the sampling size equal to dtest, which greatly 
reduces the cost of distance checking due to fewer samples 
generated, particularly when the separating distance increases. Such 
a large sampling size used in ADVESS (Fig. 2a) tends to result in a 
larger PTD than does a smaller fixed step size used in other 
algorithms (Fig. 2b) because the former provides less accurate 

distance control than the latter. Roughly speaking, the PTD caused 
by the former is λ (1 < λ < 1.155 = 1 / cos60°) times the one by the 
latter and the worst case occurs when SA1 = SB1 = A1B1 = dtest. In 
order to maintain acceptable global uniformity, a larger dtest can be 
used in ADVESS to suppress the PTD. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Given a sample S and the distances to two samples (A1, B1 in 
Figure a and A2, B2 in Figure b) of a streamline, i.e., L1 and L2 (L1 >= 
dtest, L2 >= dtest), a longer inter-sample interval (Figure a, the case for 
ADVESS) introduces a larger distance control error (ε1 > ε2) than does 
a shorter inter-sample interval (Figure b, the case for other algorithms 
using a fixed step size integrator). 

Since ADVESS employs a large sampling stride, there may be a 
large curvature between two successive evenly-spaced samples as 
opposed to a straight line segment shown in Fig. 2a. To address this 
scenario for acceptable distance control, distance checking is 
performed not only on evenly-spaced samples obtained through 
cubic Hermite polynomial interpolation, but also on raw points 
generated by the RK4-ASSEC integrator. Once a streamline is 
advected and survives the length check, all these points are registered 
in the distance controller while only raw points are rendered to show 
the placement. Even with raw points considered, many fewer 
samples are created in ADVESS than in other algorithms and the 
computational cost of distance checking is considerably reduced. 

3.2 Enhancing Placement Quality 
Since the adaptive step size may be large when streamlines cross the 
field boundaries, streamlines must be clipped against the boundaries. 
Otherwise the placement would be cluttered by simply truncated 
streamlines and accordingly encroaching streamlets (upper left in 
Fig. 3). Evenly-spaced sampling, distance checking, and controller 
registration must be performed on the extended part of each clipped 
streamline. Otherwise the encroaching streamlets would remain due 
to being accepted by the un-updated controller (upper right in Fig. 3). 
As boundary artifacts are eliminated via streamline clipping coupled 
with normal distance control, there are still discontinuities and 
cavities (lower left in Fig. 3) in the placement. To enhance placement 
quality, we present double-queuing and adaptive distance control to 
minimize discontinuities and cavities, respectively. 

3.2.1 Double-Queuing Seeds 
The random selection of initial seeds and the FIFO seed scheduler 
adopted in Jobard and Lefer’s algorithm [8] neglect the importance 
of flow topology and the desire for long streamlines. Verma et al.’s 
seeding strategy [15] emphasizes topological structures but sacrifices 
the global uniformity. Mebarki et al.’s seeding strategy [9] based on 
Delaunay triangulation is too computationally expensive to handle a 
huge number of samples when a small fixed step size is used for 
high-density streamline placement. 

We propose an improved seeding strategy that prioritizes 
topological seeding and favors long streamlines. A lightweight 
topological analysis is conducted to provide a guide to select initial 
seeds based on topological templates [15]. To spread this schematic 

S
S

(a) (b)

  longer line segment                     shorter line segment 

L1 

A1 

L1 L2 

B1 

L2 

B2 A2 

dtest 

ε1 ε2 

967



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006 

seeding pattern as much as possible, we assign a higher priority to 
streamline seeds than regular (non-seed) samples in introducing 
neighboring candidates. Specifically, we employ two queues, a 
primary queue and a secondary queue. The primary queue serves as 
the major seed provider where initial topological seeds are assigned a 
highest weight. Candidates introduced by streamline seeds are also 
stored in the primary queue, but are sorted by the weight, i.e., the 
streamline length. The secondary queue stores candidates introduced 
by regular samples in an FIFO manner and it is used only when the 
primary queue is temporarily empty. Our ADVESS algorithm runs 
until the secondary queue is empty. The pseudo code for double-
queuing seeds is given in Fig. 4. 

Double-queuing enhances placement quality by reducing 
discontinuities and favoring long streamlines. The placement 
generated using double queues (lower right in Fig. 3) is better in 
quality than the one generated using a simplistic neighborhood 
seeding strategy (lower left in Fig. 3). Double-queuing adds a 
marginal cost to ADVESS since a lightweight topological analysis is 
conducted and sorting is performed only in the primary queue on a 
small number of candidates introduced by streamline seeds. 
 

 

 
Fig. 3. Placements of 1% density generated for a 300 × 300 flow field. 
Streamlines are simply truncated outward and accordingly streamlets 
(in red) encroach inward near the boundaries when streamlines are 
not clipped against the boundaries (upper left). When streamlines are 
clipped without distance control and controller registration, the 
encroaching streamlets (in red) remain due to being accepted by the 
un-updated controller (upper right). When streamlines are clipped with 
normal distance control, boundary artifacts are eliminated. There are 
still a lot of discontinuities and cavities in the placement generated 
using a simplistic neighborhood seeding strategy (lower left). 
Discontinuities are significantly reduced and streamlines get longer in 
the placement generated using double queues, though there are still 
some cavities, particularly near critical points (lower right). 

3.2.2 Adaptive Distance Control 
Double-queuing alleviates the cavity problem, though there are still 
cavities that cannot be eliminated (lower right in Fig. 3). Thus we 
propose to use adaptive distance control to attack this problem. This 
idea was inspired by the use of two distance parameters, i.e., dsep and 
dtest, in many streamline placement algorithms based on inter-sample 
distance control. The second parameter relaxes distance control, 
helping streamlines pass where cavities might otherwise remain. 
Fixing the value of dtest throughout the streamline placement process 

fails to consider the flow behavior. As a result, inter-sample distance 
control is still excessively stringent in some turbulent areas while it 
is unnecessarily loose in some laminar areas. The disparity of the 
placement density is largely caused by such a stiff distance control 
scheme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Pseudo code for double-queuing seeds. 

Our ADVESS algorithm employs adaptive distance control based 
on the local flow variance. The local variance of a two-dimensional 
flow can be measured by a scalar value: 

conDiv = ∂(νx) / ∂x + ∂(νy) / ∂y 
where νx and νy are vector components. The value is positive when 
the flow diverges and negative when the flow converges. Since 
streamlines are advected in both directions, the magnitude of the 
local flow variance, conDiv, may be used to govern adaptive 
distance control. It is computed at each grid point and mapped, 
usually non-linearly, to [0, 1] before it is used to determine an 
adaptive map. The adaptive map stores scaling parameters, which are 
used to modulate the separating distance: 

adaptiveMap[i] = minScale + (1 – minScale)(1 – varianceMag[i]) 
where minScale is a minimum scaling value specified by the user. 
The adaptive map value ([minScale, 1]) is larger for laminar areas 
and smaller for turbulent areas. During the placement process, the 
adaptive map is accessed to adjust distance control.  

Care should be taken not to make minScale so small that it affects 
the global uniformity. Currently we use the adaptive map to 
modulate both dsep and dtest. For the 300 × 300 flow field used in Fig. 
3, we set minScale to 0.75 with good results. The placement 
generated using adaptive distance control is shown in Fig. 8 (bottom 
middle). Cavities are effectively eliminated and placement quality is 
considerably improved with acceptable global uniformity at a 
negligible additional cost. 

3.3 Detecting Streamline Loops 
Without effective loop detection, a placement might be cluttered by 
closed or spiraling (not closed) streamlines (upper in Fig. 5). 
Algorithms based on inter-sample distance control are susceptible to 
this problem if each sample is checked against only the samples of 
other streamlines. To perform loop detection, the sample cannot be 
simply checked against other samples of the current streamline. 
Otherwise the advection would be immediately terminated even 
when there is no loop because the distance between any two 
successive samples is not greater than the separating distance.  

Although there are general algorithms [17, 18] for very accurate 
detection of closed streamlines, they are too computationally 
expensive to be adapted for interactive streamline placement. 
Mebarki et al. [9] proposed to insert all samples in a Delaunay 
triangulation by which the minimum circumcircle diameter of the 

void  PopToAdvect(QUEUE*  q) 
{  Pop a seed s from q head for streamline advection; 

if(s is accepted && (l = streamline length) > L) 
{  s introduces two neighboring candidates c1 and c2 with weight l; 
    Send c1 and c2 to primary queue and sort them by weight; 
    for(each regular non-seed sample of the streamline) 
        Push two neighboring candidates to secondary queue tail; 
} 

} 
void  DoubleQueuingSeeds() 
{  Extract critical points and use seeding templates to set initial seeds; 

Add initial seeds to primary queue with a maximum weight MAX; 
do   
{  while(primary queue not empty) PopToAdvect(primary queue); 
    if(secondary queue not empty) PopToAdvect(secondary queue); 

    }  while(secondary queue not empty); 
} 
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triangles caused by the new sample is used to approximate both 
inter-streamline distance and streamlineself distance (for loop 
detection). This strategy mandates that the step size be significantly 
smaller than the separating distance for acceptable approximation, 
which causes a huge computational cost. Given an unknown flow 
field, this method is also prone to missing loops when the size is not 
sufficiently small. A demo program [19] of Mebarki et al.’s 
algorithm fails to handle the flow field used in Fig. 5. 

 

 

 

Fig. 5. A placement generated without loop detection is cluttered by 
streamline loops (upper). Closed and spiraling streamlines can be 
robustly detected and effectively processed using our ADVESS 
(lower). Flow field size: 525 × 241; separating distance: 4.5 in cell size. 

We propose a fast effective loop detection strategy, which is 
robust due to high accuracy guaranteed through an RK4-ASSEC 
integrator. A streamline is ill-looping when the distance between two 
successive cycles is smaller than the threshold distance dtest. A closed 
streamline is always ill-looping as a whole. However, a spiraling 
streamline may be ill-looping only in part of the curve. Our principle 
is to strictly disallow the ill-looping part of a streamline, if any, to 
advect more than one cycle due to the cluttering it would cause 
otherwise. Within this one-cycle limit, the ill-looping part is allowed 
to advect as long as possible to encourage the formation of closed 
loops, without cluttering the placement. It is worth mentioning that 
regardless of the metrics used, effective loop detection cannot be 
achieved by simply checking the current sample against the seed 
since the ill-looping part of a spiraling streamline does not 
necessarily begin with the seed. To address this problem, a brute-
force but universal solution is to check each existing sample against 
the current sample with respect to the distance and the ill-looping 
angle. The ill-looping angle of each existing sample relative to the 
current sample is not obtained through segment-wise angle 
accumulation due to the large computational cost. Instead it is 
indirectly measured by a dot-product ( ) between two normalized 
vectors. In fact, the major task of loop detection is to distinguish 
between an opponent sample pn (Fig. 6) and a proponent sample pm 
when both are less than dtest to the current sample p0 and the two 
associated flow vectors, vn and vm, are both aligned, within a small 
threshold angle α, with the latest uni-directional (i.e., always in the 
positive flow direction) line segment vector v1. pn, as a “long-term α-
neighbor” of p0, approaches the one-cycle limit while pm, as a “short-
term α-neighbor” of p0, does not. The two vectors, pointing to p0 and 
the previous sample p1, respectively, from any opponent or 
proponent sample, are used to compute two dot-products with v1. pn 
is then distinguishable from pm by at least one negative dot-product 

for positive advection. This holds for negative advection if the two 
dot-products are negated. There may be several proponent samples 
found through a loop detection process (one process for each newly 
generated sample). However, any opponent sample terminates such a 
process as the ill-looping part has been advected enough (ill-looping 
angle >= 2π-α) to classify the loop by testing whether the vector 
pointing from p0 to pn is aligned, within a small threshold angle β, 
with the actual integration vector at p0. Satisfactory results can be 
obtained by using α = 20° and β = 10° in our test. Despite this loop 
classification scheme being less accurate than [17, 18], our loop 
detection strategy is robust enough to avoid any cluttering. Fig. 6 
shows the two possible cases for outward negative advection. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Given the current sample p0 and the previous sample p1 of an 
outward-negatively advected streamline, the major task of loop 
detection is to distinguish between an opponent sample pn (|p0pn| < 
dtest and αn <= α; any such sample terminates the loop detection 
process) and a proponent sample pm (|p0pm| < dtest and αm <= α; there 
may be several samples of this kind found through a loop detection 
process). pn is distinguishable from pm since at least one of the two 
negated (due to the negative advection) dot-products is negative ( –
(un0  v1) < 0, –(un1  v1) < 0 on the left and –(un0  v1)  > 0, –(un1  
v1) < 0 on the right ) for pn while both are non-negative ( –(um0  v1) > 
0, –(um1  v1) > 0 ) for pm. Samples along the black part of the 
streamline are not “α-neighbors” of p0 and hence are skipped. 
Segment p0p1 and α are exaggerated here for illustrative purposes.  

We use a loop controller, with a data structure similar to that of 
the global controller (Fig. 1), to achieve fast loop detection by 
limiting distance checking against the current sample to only the 
samples in the nine local cells. Furthermore, the signed RK4-ASSEC 
step index, determined by the advection direction, is attached to each 
raw sample as the stamp. Each evenly-interpolated sample is 
attached with a neighboring raw sample’s stamp. Given a threshold 
stamp-difference δ, many proponent samples are skipped through 
fast stamp checking without distance checking against the current 
sample. Each cell of the loop controller maintains the minimum and 
maximum stamps of the accepted samples and hence many cells can 
be efficiently skipped. A conservative value for δ can be 4 and a 
larger one may be used due to high curve-smoothness guaranteed by 
adaptive step size. The current sample is first checked by the loop 
controller and, unless an ill-looping cycle is found, sent to the global 
controller for inter-streamline distance checking. Otherwise, the 
advection is terminated to either form a closed loop or refuse further 
spiraling. The loop controller is cleared upon the advection of each 
new streamline. Fig. 7 shows the pseudo code for loop detection. 

Our loop detection strategy is universal, effective, fast, and 
robust. Function pointers are used in our implementation to replace 
all if-statements for high-performance execution. It takes 0.253 
seconds for ADVESS with loop detection to generate the placement 
in Fig. 5 (lower). All loops are detected and processed well. 

4 RESULTS AND DISCUSSIONS 
We have implemented Jobard and Lefer’s algorithm [8] and our 
ADVESS algorithm using Visual C++ on a Windows XP / Dell 
Inspiron 2650 notebook (Pentium IV 1.70GHz, 512MB RAM) with 
exactly the same code on vector interpolation, distance controller, 
and data structures for storing streamlines. Compared to Jobard and 
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Lefer’s algorithm that uses a fixed step size RK4 integrator and a 
neighborhood seeding strategy, our ADVESS algorithm employs an 
RK4-ASSEC integrator coupled with cubic Hermite polynomial 
interpolation, streamline clipping, double-queuing, adaptive distance 
control, and loop detection. We have not implemented Mebarki et 
al.’s algorithm since we have access to the executable program [19]. 
We have compared the three algorithms on the WinTel platform 
mentioned above in placement quality and generation speed using a 
300 × 300 flow field. The adaptive step size is initialized to 0.0625 
and varies between 0.0005 and 32.0 (in cell size) in our algorithm 
while a fixed step size of 0.15 is set in the other two algorithms. Fig. 
8 shows comparative streamline placements for three increasing 
densities. Placements generated by our algorithm are better than 
those by Jobard and Lefer’s algorithm, and are comparable with 
those by Mebarki et al.’s algorithm in quality, specifically regarding 
uniformity, continuity, and coverage. It is worth mentioning that 
placement quality is heavily dependent on loop detection as 
demonstrated in Fig. 5, in addition to the above three factors. The 
flow field used in Fig. 8 is intended to provide a “clean” comparison 
of streamline placements only in the former three factors, without 
being cluttered by ill-looping streamlines. Table 1 shows the timings 
of the algorithms for generating the placements. Such a high 
placement speed of our algorithm comes along with high accuracy, 
i.e., 0.0 ~ 0.00001 (in cell size). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Pseudo code for our loop detection strategy. 

 
Table 1. Timings measured on Pentium IV (1.70GHz, 512MB RAM). 

density 
(% width) 

Jobard-Lefer 
algorithm 

Mebarki et al.’s 
algorithm 

our ADVESS 
algorithm 

1.0% 1.882 s 1.262 s 0.241 s 
1.5% 1.382 s 0.811 s 0.140 s 
2.0% 1.142 s 0.621 s 0.080 s 

 
Fig. 9 shows the streamline placement (upper) generated using 

our algorithm for a 468 × 337 flow field obtained through a US Navy 
model of the Northeast Pacific Ocean (180° W ~ 78° W, 20° N ~ 62° 
N). The land is shown in brown and Hawaii islands in red. The flow 
is highly turbulent with hundreds of critical points. Our algorithm is 
robust enough to detect and process all streamline loops. Also shown 
in Fig. 9 are the two placements generated using our algorithm 
(lower left) and Mebarki et al.’s algorithm (lower right) for a 201 × 
201 flow field that is obtained by zooming a region of interest (184 ~ 
284, 136 ~ 236, marked by the red square) of the Northeast Pacific 

Ocean. There are three spiraling streamlines (marked by blue 
rectangles) detected by both algorithms while there are two loops 
(marked by red rectangles) missed by Mebarki et al.’s algorithm that 
clutter the placement. These two loops can be effectively detected by 
our algorithm and processed as a closed streamline and a spiraling 
streamline, respectively. For this zoomed flow, our algorithm is more 
robust in loop detection and 4.6 times faster in placement generation 
than Mebarki et al.’s algorithm. 

5 CONCLUSIONS AND FUTURE WORK 
We have presented an advanced evenly-spaced streamline placement 
algorithm. It exploits a fourth-order Runge-Kutta integrator with 
adaptive step size and error control for rapid, but accurate, flow 
advection. Cubic Hermite polynomial interpolation with large 
sample-spacing is employed to reduce the amount of distance 
checking. Double queues are used to prioritize topological seeding 
and to favor long streamlines to minimize discontinuities. Adaptive 
distance control based on the local flow characteristics is adopted to 
reduce cavities. Furthermore, we have presented a universal, 
effective, fast, and robust loop detection strategy to address closed 
and spiraling streamlines. In particular, our algorithm is an order-of-
magnitude faster than Jobard and Lefer’s algorithm [8] with better 
placement quality. Our algorithm is over 5 times faster than Mebarki 
et al.’s algorithm [9] with comparable placement quality, but with a 
more robust solution to loop detection. 

As for future work, we would like to extend our ADVESS 
algorithm to view-dependent streamline placement on 2D planar 
surfaces, on 3D curved surfaces, and in 3D volumes. 
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Fig. 8. Streamline placements generated by Jobard and Lefer’s algorithm (left column), our ADVESS algorithm (middle column), and Mebarki et 
al.’s algorithm (right column) for three increasing densities (top to bottom, 2.0%, 1.5%, and 1.0%) of a 300 × 300 flow field. 
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Fig. 9. Our ADVESS algorithm is effective in generating the placement (upper, separating distance: 2.0 in cell size) of evenly-spaced streamlines 
for a 468 × 337 flow field obtained through a US Navy model of the Northeast Pacific Ocean (180° W ~ 78° W, 20° N ~ 62° N). Also shown are 
the two placements (separating distance: 2.4 in cell size) generated by our algorithm (lower left, time used: 0.362 seconds) and Mebarki et al.’s 
algorithm (lower right, time used: 1.684 seconds) for a zoomed region (data size: 201 × 201) of the original ocean flow field. Our algorithm is 
more robust in loop detection and 4.6 times faster in placement generation than Mebarki et al.’s algorithm. 
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